Musings on Passive House Standards and the Costs of New Home Construction, Part 3

If you have not yet read my posts (rants) in Part 1 and Part 2, maybe check those out first.

Have you heard of the Pareto Rule before? It’s more commonly known as the 80/20 Rule. It says that for many events, roughly 80% of the effects come from 20% of the causes.

I think that Passive House (PH) follows this rule to a T. It has certainly been our experience in building an extremely energy efficient home and following the principles of PH. I believe that 80% of the benefits of PH come from about 20% of the cost and effort (from Part 1 of these posts, I noted that our financial cost was about 8% more than a standard house construction). Whereas to get that last 20% to the hit the PH certified requirements, you’re going to have to spend 80% more… At least this was my assumption.

Still being the curious person I am and because I kept getting asked about it… I just had to know. How close does our house come to the PH standard?

The only way to find out would be to either track the house over the next year or to have someone run the house through the Passive House Planning Package software (PHPP) to predict our values.

As you may recall, we were never pursing PH certification, right from the beginning we were told the cost-effectiveness (80/20 rule) was just not there. Maybe if there was some incentive or rebate for going full-out, one could justify it. We were also told that there was no need to use the PHPP as it was too expensive. This latter statement however is simply not correct.

I decided to ask around and see who could put our house through the PHPP for us. Or at least get a price quote for it. Maybe it would be too costly and so I wouldn’t bother if it was. After a few emails, I was eventually referred to a very well-respected PH consultant out of Alberta – Stuart Fix at ReNu Building Science. I sent my email explaining that we’d already built the house and so really can’t change anything now, but due to curiosity I was wondering if he could run the house through the software. No problem he said. The price we were given was entirely reasonable and was actually less than what we had paid to run the house through the inferior HOT2000 software prior to building. Crap!

After a couple weeks we received the results, not surprisingly: we weren’t a Passive House. But the results on the various aspects of the house were very interesting and lead to some interesting points of discussion.

Based the three criteria for PH certification, recall:

  1. Space Heat Demand: max. 15 kWh/m2a  OR  Heating load max. 10 W/m2
  2. Pressurization Test Result @ 50 Pa: max. 0.6 ACH
  3. Total Primary Energy Demand: max. 120 kWh/m2a

Our results were as follows:

  1. Space Heat Demand: 37 kWh/m2a
  2. Heating load: 22 kWh/m2a
  3. Pressurization test result (assumed 0.6 ACH, prior to testing)
  4. Total Primary Energy Demand: 116 kWh/m2a

So, you can see that the only criteria we met was the Total Primary Energy Demand. The blower door test we did later came back at 0.72 ACH (we’d run the software assuming 0.6 ACH as a target). As a result of the actual pressurization value, this would correspondingly increase the other values, but, for argument’s sake, let’s simply say that the Total Primary Energy Demand we either met, or were very close to meeting, while for the Heat Demand and Heat Load, we were WAY above the German PH maximum values.

I won’t reiterate why this makes sense given the climatic and heating requirement differences of the Canadian prairies versus Germany (see Part 2). But I had to ask the PH consultant:

“If we were still in the planning stages of the house, what would be your recommendations to try and reduce these two values (Space heating demand and heating load)? Not that we would change anything at this point, but I’d be curious as to how we would have gotten those values lower – and if it would have been at all possible with our type of house and in our climate to feasibly meet the PH requirements as stated?”

​The ways to reduce the heating load & demand are as follows:
  • More insulation (you already have great R-values)
  • Lower airtightness (dropping from 0.6 to 0.3 has quite an impact, but you’re already doing tremendously well)
  • Add more south glazing, reduce all other glazing. (You already have a great balance of glazing)
  • Build a larger home (!?!?… small homes are the hardest to make meet an intensity based target, as they have the largest surface area to volume ratio. Meaning that a larger building squeezes more floor area into slightly more exterior envelope area, reducing heat loss per unit of floor area. The Germans do this to motivate one to build multi-family dwellings… but the result in North America has been a lot of larger single family homes getting certified).
​Your home is a great example of why you don’t see certified Passive House buildings taking off in Canada. It’s damn near impossible to design a compliant home, without either blowing the bank or ending up with a solar oven. I’ve designed many compliant buildings, and 99% of them end up backing off on insulation and glazing to be around where your home is. You’ll note that local Net Zero Energy homes have similar envelope performance to your home; it’s most cost effective from that baseline to invest in ​solar PV generation than to add more insulation.​

Under the section of the report on Energy Balance Heating, I asked, “I was surprised by the amount of heat loss through the walls as well as the windows – is that due to the size/number of south windows? Or does that relate to the number of windows on the east/west and north sides more so? How could we have changed that to reduce the heat loss?”

Ideally, if the insulation in all areas of the building cost the same, you’d want to balance the R-values so that the heat loss intensity rate is the same through all envelope elements. Your exterior above grade wall has the highest relative rate of heat loss, so that’d be the place to add more insulation first if you want to improve performance. If you want to optimize R-value ratios this way, it’s smartest to add in the cost/ft2 of each insulation type, then you can maximise your return on investment. For example, adding 1″ of cellulose in the attic is much cheaper than an inch of foam outside of a wall.
The glazing of course has the highest rate of heat loss, but that’s just because you max out at around R10, where your opaque assemblies are R50+.
Your North, East, and West windows are NET losers of heat, while the South windows offer a net gain. This is as expected, and is really the basis of Passive Solar design, that a South window can actually HEAT a building throughout the heating season, with the right recipe. If you wanted to optimize the glazing further, you can add more South glazing while removing glazing on the other elevations (North being the biggest drag on efficiency), which will continually reduce the annual heating demand (how much energy is consumed to heat). This is a Red Flag area though, following this path of more South glazing will eventually cause overheating throughout the year. Prediction of overheating / discomfort is an area where the PHPP is very poor, and I’ve been burned in the past on some projects where we pushed the Passive solar too far in an attempt to reach certification. I now use IES<VE> as a energy modelling tool because of its ability to accurately predict overheating.
“Did you have any thoughts or considerations you would have given us had we run these numbers off the bat with the house planning? “
I’d honestly say you’ve done a great job on your home. It’s pretty much impossible to meet the PHI Passive House criteria for a small single family home in Saskatchewan, without significant and typically unjustifiably cost. The PHIUS criteria is based on a more climate-specific analysis, which attempts to stop investment in conservation at the point a little bit beyond where renewable generation is more feasible. Meaning it’s more realistic to meet the PHIUS+ targets, though we’re not seeing much uptake in the Prairies.​
All of this was very interesting and at the same time reassuring to me. Like many others, I had put a lot of credence on the PH standards as the be all and end all (even still despite reading and appreciating the issues I’ve previously discussed). It was good to hear that the assumptions we’d made were in the end in line with the reality of trying to build a PH in Saskatchewan.
Even still there was one last thing that I just had to know… it kept coming up again and again. It was one of those pesky assumptions we kept getting asked about. And one of my recently reposted blogs on Green Building Advisor brought it back to my mind again… German windows.
It is regarded that the German (or Polish and Lithuanian) Passive House certified windows are the creme de la creme of windows. They are attractive, heavy, thick (6″ wide!), and expensive. But if you want to reach Passive House standards, you gotta have ’em! (Or at least that’s what they say).
I felt a little bit guilty asking for quotes on windows that we were never going to buy, but my curiosity just couldn’t be helped. I wanted to know how expensive PH-certified windows would have been for our place. We’d heard outrageous prices of up to $80,000 for some homes.
We tendered a couple of quotes and received a reply from Optiwin of Lithuania. The salesperson was exceptionally thorough and I was really impressed with his communication (which made me feel more guilty). After a couple of weeks I received the pricing back. I was actually surprised that the cost of the PH windows was only $17,000 CDN more than the windows we purchased from Duxton Windows. Although they would have been certainly way outside our budget anyway – they weren’t 400% more than the price we paid by any means (just a measly 75% more). Nonetheless, I really had to pause again and wonder, why? What would make these windows $17,000 better than the fibreglass, triple pane windows we got? The U-factors and solar heat gain coefficients were not that big a difference. Maybe the the locking mechanisms of the windows could get you a bit lower on your airtightness – but $17,000? How long would it take you to save on heating bills to justify that “investment”?
All this being said, I’m happy to have answered my lingering questions and to confirm some of my assumptions. The bottomline, of course, though is that you want to be able to sit back and be happy with what is around you. To know that you did the best you could in building a sustainable home for the future.
I can’t complain.
IMG_3500

Musings on Passive House Standards and the Costs of New Home Construction, Part 2

If you have not read Part 1 yet, please go back and read it first. 

In mid-November of 2015, just prior to us moving into the house, we were asked to be apart of the Passive House Days tour (a world-wide weekend of awareness of Passive House and energy efficient building). Well, not “officially” – we were asked to be apart of the tour by the event organizer in Saskatchewan who is the Passive House (PH) consultant on what should become the first certified PH in the Saskatchewan. Even though we did not build a PH, we did follow their standards as closely as I could justify, but from the beginning we were not pursuing certification.

Although all of the visitors on the PH Days Tour were very interested in our house, our process, and why we did the things we did, one question we got a lot was, “If you were following the PH standards why not go all the way for certification?”

First, let’s back-up a little bit. Indeed the principles of a PH are second to none. From Passipedia: “Passivhaus is a building standard that is truly energy efficientcomfortable and affordable at the same time.” So simple. Brilliant even. I wanted to build a PH. Who wouldn’t?

Strangely, if you visit Canadian Passive House Institute (CanPHI) website there are total of 5 projects that have received Canadian PH certification. If you look up the PH Project Database there are a grand total of 23 houses in all of Canada that have received certification.

Why the discrepancy you may ask? Why so few certified projects?

This is a bit complicated and took me awhile to figure out. But here are the basics as I understand it: the Passivhaus standards were developed in Germany for German buildings in the German climate (obviously). However, when other builders in other countries tried to build a “Passivhaus” in say the USA, England, or Canada, they realized something profound: Hey… wait a second… I don’t live in Germany!

Maybe trying to build to German PH certified standards in Minnesota or Saskatchewan is going to be really difficult? Maybe impossible? Or maybe possible but really expensive? Or maybe possible but a really uncomfortable building to actually live in?

Still PH institute satellites started to spring up in most countries around the world. Slowly, Passive Houses, built to the German requirements, started to be built in other countries with the first certified Canadian building being built in 2009. The uptake, however, was certainly not rapid nor widespread. Why? Was it not as the PH Institute of Germany said that these buildings are “truly energy efficientcomfortable and affordable”? Or is it just that we are too cheap and/or lazy and/or complacent to meet those strict German requirements elsewhere?

It seems like this is something that these PH satellites were struggling with as discussed herehere and here.

A few years ago though, some people started to say, this is silly – why are we following German standards and requirements for our buildings when we don’t actually live in Germany?

The German PH standards are as follows:

  1. Space Heat Demand: max. 15 kWh/m2a  OR  Heating load max. 10 W/m2
  2. Pressurization Test Result @ 50 Pa: max. 0.6 ACH
  3. Total Primary Energy Demand: max. 120 kWh/m2a

Simple enough right? Hit these numbers using the PH planning software and your building can be certified as a PH. Where’s the problem?

The Pressurization Test for 0.6 ACH is strict, but not impossible. There had been many houses built to this level of airtightness before PH came around. Rob Dumont’s own home in Saskatoon in 1992 tested at an awe-inspiring 0.47 ACH.

Jumping to the third requirement, the Total Primary Energy Demand of 120 kWh/m2a ensures essentially that you are not wasting energy or are at least using it wisely. It forces you to use energy efficient lighting, appliances and mechanical systems. I don’t think anyone can argue with that as being important to green building.

The real problem though, in my opinion, is the Space Heating Demand of 15 kWh/m2a or heat load of 10 W/m2. These numbers dictate the maximum space heating allowed for each square meter of a building. Remember – this is based on a German climate.

In Germany the number of heating degree days (HDD) is around 3100 compared to over 10,000 HDD in Saskatoon. So that means there is over three times as much heating requirement in Saskatoon as compared to Germany. Besides that, who really cares what your heating demand is? With the maximum energy demand of 120 kWh/m2a already stated, what difference does it make whether you use 50% of that to heat your house or 10% in terms of your overall efficiency? This is my real beef with PH and the one that most others working towards PH in countries that have climates other than a German one tend to struggle with too.

Recently the PH Institute in the USA (PHIUS) split off (or was banished – depending on what you read) from it’s affiliation with the German PHI. This allowed them to develop their own standards and specific requirements for climate zones in the USA (Minneapolis also has different heating needs compared to Miami) and also to use North American calculation values instead of European. As a result it is now easier – ok, let’s say, attainable – to hit the PH targets for your Minneapolis house using a Minneapolis climate to calculate your requirements. Now that makes sense to me.

Sadly, the Canadian PH Institute has been resistant to following their American counterparts and has continued to align itself with the German requirements. Thus making it darn near practically impossible to meet the PH standard and become certified by the Canadian PH Institute.

There is a small loop-hole of sorts though, a Canadian house can pursue certification via the PHIUS, which is somewhat closer to our climate in the northern States. Although the conversion is not exact, the Space Heating Demand requirement for the northern USA is about 30 kWh/m2a (or double that of the German standard maximum). That’s better, but still the maximum heating degree days in Saskatoon are more than any other place in continental USA. Nonetheless, there have been a few of PHs in Canada that have used the US system to become certified (ok, like maybe 10 or 12).

I told you this was complicated…

Anyway, let’s try to bring this full circle, back to my original question of why don’t we just build all new houses in Canada to the PH standard?

I hope that I have presented the argument that it may not be realistic to build a certified PH in Canada and follow the original edicts of the German Passivhaus Institute of “energy efficientcomfortable and affordable.”

From Part 1 of this post, you may be able to see that there is a HUGE chasm between how most new homes in Canada are currently built as a result of our pathetic building code allowing inefficient homes to perpetuate, and the extremely difficult PH standards currently set in Canada.

Unfortunately, I think the CanPHI has done itself a disservice in not distancing itself from the German PH Institute. By not developing it’s own Canadian climate specific standards for the unique climate zones of our country, which maybe (just maybe) one day could be adopted on a large nation-wide scale.

Until such a time that the CanPHI recognizes this and modifies their requirements appropriately and regionally, I doubt that PH will ever gain much more than a very small handful of faithful followers willing to spend, at all costs, to meet an arbitrary set of values developed on the other side of the world.

That being said, I do KNOW that you CAN in fact build a house in Canada that IS energy efficientcomfortable and affordable.

But it isn’t a Passive House. 

Because that’s what we’ve done.

house-snow

Musings on Passive House Standards and the Costs of New Home Construction, Part 1

A friend of mine sent me this article for Tree Hugger yesterday about an Irish county that made the Passive House standard for all new home construction. This is a pretty big deal. The question then came up – why doesn’t Canada (or the USA) adopt such strict and stringent standards to their new home construction? Certainly the Paris Climate Conference of 2015 has finally made it official what everyone and their dog already knew: the world is overheating and we need to do something about it before we all die. Building better homes could make a massive difference in our world’s energy use. It is well-known that a certified Passive House uses 80-90% less energy than a standard house.

The problem, as usual though, in making such rigorous standards mandatory is a combination of bureaucracy, status quo, and resistance to change. In this post and my next, I will make the argument that I believe there is a skewed perspective on both sides of this battle in Canada.

Did you know that the minimum standard for wall construction in Saskatchewan (a province that has frigid winters of -40° temperatures for long stretches and over 10,000 heating degree days per year) is a 2×6 wall with batt insulation? The effective R-value of this wall is only R17.5 due to thermal bridging (as the wood studs bridge between the inside and outside of the wall). This standard must be out of date, you say? In fact, this was recently upgraded to this absurdly pathetic level in 2012 (it was only a 2×4 wall before that). Shameful.

As if this wasn’t bad enough, most homes in Saskatchewan feature R12 in basement walls and only R40 in the attic. There is no requirement for insulation under the slab of the house. Also, the building code requires only double-pane windows – such insufficient windows account for a massive amount of heat loss of up to 50% (these are usually vinyl framed windows, though sometimes wood or aluminum). And placement of these crappy windows can lead to further issues with heat loss due to inadequate southern exposure and large windows on the north side of house. Furthermore, air leakage rates in most new homes is about 2.0 ACH@50pascals (which is actually one of the lowest values tested in Canada). (Source: Energy Standards by Ken Cooper)

I assume that you can get the picture that our homes are generally very inefficient (don’t think that this is specific to Saskatchewan – this is relatively consistent across North America).

Although we did not build a Passive House, we followed the principles of this as closely as we could financially justify (which is the rub, more on this in my next post). For a quick comparison, our house has R56 walls, R80 attic, R32 basement walls and under-slab. Our latest air tightness test was 0.72 ACH@50pascals (and with some extra tightening we’re hoping to get this to 0.65 or less at the next test). We used triple-pane fibreglass windows. The design of the house maximized heat gain through the south windows and minimized heat loss through the windows on the east, west and north sides. Passive shading with our roof overhangs prevents overheating in the summer. The positioning of the house is directly south (a luxury we have living on an acreage). We also installed PV panels to offset our meagre energy use, which are becoming more and more affordable.

Now, a lot of people wonder and ask (I know I did prior to building), that it must cost substantially more money to build a house to this level of efficiency?

The simple truth is that it does not have to.

The general consensus is that a new custom home in Canada, excluding the cost of purchasing land, is between $200 and $300 per square foot to build (a contractor spec “cookie cutter” home built to the minimum standard with minimal features and cheap finishing can be $175/sq.ft or less). Indeed this is large range – for a 1500sq.ft home you could either spend $300,000 or $450,000. But for argument’s sake, let’s say $250/sq.ft is a realistic cost of a new custom home (we will also assume that most people would not build to the bare minimum construction standard of a spec house and see the benefit of adding triple pane windows and a 2″ layer of EPS foam on the outside of their 2×6 wall).

OK so where are the extra costs?

I would say that the design planning and orientation of the house will be the single biggest factor in determining your initial and long-term costs in a high performance, energy efficient house. It does not cost anymore to build a house with your windows facing north instead of facing south. Positioning the long side of your house to east does not cost anymore than facing it south. Designing correct overhangs for shading does not cost anymore than designing insufficient overhangs. Designing outcroppings, bay windows, and cantilevers does not cost anymore to design than a rectangle or a square-shaped building. Placing operable windows appropriately for cross-ventilation does not cost anything extra either. But all of these decisions and factors can have huge ramifications on the cost of construction and/or long-term costs of operation. We had several team meetings during our design process (including a Passive House certified designer, contractor, and LEED engineers) to decide on which systems would be best suited to be optimally energy efficient, be comfortable to live in, and also to make sure everyone, including sub-contractors were on the same page. This extra consulting time accounted for 2.5% of our overall cost.

In terms of actual construction costs, we built a double 2×4 stud wall that is 16″ wide. The cost of materials for this wall system versus the cost of 2x6s and the 2″ of EPS foam is almost negligible. Framing labour costs were slightly more though as each exterior wall was built twice (accounting for an additional 2% of the overall budget). Remember though our design is simple, a rectangle, meaning four walls – no bays or outcroppings. We also invested 20% more in purchasing fibreglass framed triple-pane windows versus the usual vinyl or wood triple-pane windows (accounting for an additional 1.75% of the overall budget). Insulation costs slightly more but pays for itself in short order when compared to long-term operation costs (the upfront cost is an additional 2% of the overall budget). Airtightness of the house did not cost us anymore than the standard vapour barrier (although it does require some attention to detail by the tradespeople) with the exception that we needed to install a heat-recovery ventilator which cost $1200 (0.3% of the budget).

But there are also some possible cost savings to consider. One can get away with a smaller mechanical heating system due to the lower heat load required in a super-insulated and airtight house. For us, our mechanical system cost about the same as a standard house due to us deciding to install in-floor heating and a wood burning stove. Although you certainly could get away with baseboard heaters or a very small forced air furnace combined with a heat coil on your HRV if you so chose (for us we wanted the in-floor heat and a wood stove – you can read about our reasons for this here and here). Most new houses also have air conditioners installed. We do not (cross-ventilation, insulation and proper shading is all that is needed).

The bottom line is that it cost us about 8% more to build a house that is in the range of 75-80% more efficient then a standard new custom home.

After these extra costs are accounted for the rest of construction costs are basically the same as any other house – how much do you want to spend to finish the house is based on your taste and how much you want to invest in your bathroom fixtures, lighting, hardwood flooring, custom cabinets (vs. Ikea), appliances and so on. Also, how much sweat equity do you want to do yourself? All of this will have a big impact on your end costs (consider, painting our house took 5 full days, but saved us about $6,000+. Installing the tile in the bathrooms and kitchen ourselves took 10+ full days, but saved us another $8,000).

Ok, so you’re probably thinking, how much did this damn house actually cost you? Tell me already! Although I haven’t done our final-final tally yet, it is in the range of $280/sq.ft. But this also includes the cost of our 6.2 kW solar PV system, our septic system, and the cost of trades to travel the 30 minutes to our house each day. Removing these factors, to build the same house in an urban area, you could easily do it for $250/sq.ft.

Say… that’s pretty much the same as what we said a typical new house would cost, right?

So why the heck isn’t everyone doing this??

Well, it goes back to the fact that there is an unfounded assumption that building an energy efficient house costs a lot more (I think we’ve shown that it simply does not have to). It also does not help that energy costs from non-renewables such as coal-fired electricity and natural gas are very cheap still (even so, those extra 8% in building costs for us should be paid back in less than 12 years in monthly energy bill savings). And the public outcry for action is not yet greater than the apathy of maintaining the status quo on the part of our government, the building industry, and those contractors who have been making a tidy profit on their suburban sprawl spec houses.

Part two to come…

IMG_3359

Airtightness: Blower Door Testing

 

Excellent levels of airtightness are equally, if not more, important to the level of insulation you decide to put into your house. These really are (insulation and airtightness) the two pillars of an passive house and pretty well any other Eco-house building.

For our house, we’d gone with high levels of insulation in the range of 3x the typical amount for standard construction: R32 under-slab and basement walls, R56 walls, and R80 attic. However in deciding our insulation levels and our targeting goals for airtightness, we did try to strike a balance between cost-benefit and recognize the point of diminishing returns.

I have written about our insulation choices previously here and here, so I will not go into that as much, but in terms of airtightness there are some basics that are worth discussing. The fact is: air leaking into and out of a building is not efficient no matter how much insulation you have in the walls. Although insulation decisions, thermal bridging reduction, and solar gain can be designed into the house, airtightness can really only be ensured while actually constructing the building. Airtightness is tested with a blower door test and is rated based on “air changes per hour a 50 pascals of pressure.” Typical construction in Canada reaches about 3 ACH. The Canadian R2000, our high-efficient energy standard, is 1.5 ACH. While the Passive House standard is a whopping 0.6 ACH.

Although I was hoping we could target the extremely difficult goal of 0.6 ACH as per Passive House standard, the question was – how far ($$$) are you willing to go to reach this? As with insulation levels, there is a point of diminishing returns. Will 0.8 ACH versus 0.6 ACH be anymore noticeable in terms of user comfort? And over the lifespan of the building would you ever balance out these costs?

We decided to set an ambitious, but realistic goal, of 0.8 ACH.

The reason for this was four-fold:

  • 1. Our house is not big. It is a rectangular bungalow at 1240 sq.ft. The blower door test is an test of absolute air leakage from the building – not a relative test. By that I mean, that a large house can more easily meet a lower ACH level then a smaller house due to the greater volume of the house overall.
  • 2. We were not prepared to spend the greater amount of money on air sealing tapes, interior sheathing, and the labour to do this. A standard house is sealed with a 6 mil vapour barrier (cost is $50 per 8’x500′ roll) and Tuck Tape ($6 per roll). A Passive House is often sheathed with 5/8″ OSB ($25 per 4’x8′ sheet) on the interior to serve as it’s vapour barrier or high-end Intello Plus vapour barrier ($320 per 64″x164′ roll) with the seams sealed with Tescon Profil/Vana tape ($45 per roll). It does not take much in the way of math skills to see that the latter option can get extremely expensive. But if you really want to ensure you hit that Passive House 0.6 ACH target, that’s probably what you need to do (the Tescon Profil tape is often used on the outside walls as well to seal the air barrier and windows/doors).
  • 3. We were not pursuing Passive House certification, so really there was no point in ensuring we hit 0.6 ACH. If you’re spending the money to have a Passive House consultant work with you at the initial design stage and you’re spending the money on the high-end Passive House certified windows, the special tapes and the extra insulation, you better make sure you hit 0.6 ACH or all of that expense will be for nothing. For us, if we made 0.6 ACH, great, if we didn’t, oh well.
  • 4. We were installing a wood burning stove and chimney. Although the stove itself is very high quality from Morso in Denmark, I figured this extra hole in the wall would likely negatively impact our airtightness. But we were not budging on not having a wood stove. We also had another extra hole in the wall for the water cistern in the basement, but again this could not be avoided.

All that being said, we did make every effort to design the house to be as airtight as we could. The dense-packed cellulose in the walls itself provides a high degree of air sealing on it’s own. We limited the penetrations into and out of the house by selecting a condensing dryer from Bosch and having an electric boiler (the only penetrations are the chimney stack, the water cistern pipe, and the HRV). We used a standard 6 mil poly for the vapour barrier with acoustic sealant at every seam. Each seam was also taped with standard Tuck Tape to ensure another layer of added protection. Around the windows and exterior doors we purchased and used the Teson Profil air sealing tapes to attach the vapour barrier to the frames. Although this tape is very pricy, it made sense to me to use it here as the greatest area of air leakage is often at the window frames and doors.

Now it was time to test the house.

The testing is done through a Blower Boor test. “A blower door is a powerful fan that mounts into the frame of an exterior door. The fan pulls air out of the house, lowering the air pressure inside. The higher outside air pressure then flows in through all unsealed cracks and openings.” The test is repeated in the same way by drawing air into the house. “The auditors may use a smoke pencil to detect air leaks. These tests determine the air infiltration rate of a building. Blower doors consist of a frame and flexible panel that fit in a doorway, a variable-speed fan, a pressure gauge to measure the pressure differences inside and outside the home, and an airflow manometer and hoses for measuring airflow.”

Essentially it simulates wind blowing against the house in all directions at the same time. The test takes about an hour to administer with the tester taking multiple readings at different fan speeds both while depressurizing and repressurizing the building.

IMG_3178IMG_3179

While the test was running we also used an infrared meter to look at any hot/cold spots.

IMG_3181

A couple days later he sent us the results: 0.8 ACH at 50 pascals.

Right bang on our goal. Not bad. The guy who tested it said it was the tightest building he’d ever tested before.

I was happy enough with it, but a couple days later I happened to be standing beside the chimney on a windy day and I could ever so slightly hear a whistle through the pipe. I looked closely at the seams and saw they were not fully sealed. Damn!

We’d also had some crappy construction locks on the doors and I put my hand against them. I could feel wind there too! Double damn!

After sealing these leaks and a few other tiny ones we found, we did another retest a couple weeks ago. This time, the results were 0.72 ACH at 50 pascals. Not too shabby.

After talking to the tester, though, he thought that given the high then expected discrepancy between the depressurized and repressurized values that maybe the vents of the HRV had opened slightly causing a skew to occur. He’d like to do one more retest in a couple weeks, thinking this would take it down to 0.65 ACH or lower. At this point, he’s doing it at no charge as he’s simply interested to see what the truest level of airtightness is.

For me, I’m happy to know that we reached almost Passive House airtightness values while still being as economical as possible.

 

SUPER-insulation! Airtightness! The staples of a passive house.

There are seemingly innumerable weighs of building a super-insulated home. Once you venture outside of the conventional 2×6 walls with 1-2″ of EPS foam, there suddenly opens of a plethora of options. I won’t go into as I’ve talked about it before, in us choosing super-insulated walls system and the double-stud deep wall framing. Now what you put between those walls is just as important as how you construct those walls. In our case, we chose to use dense-packed cellulose.

Cellulose insulation is a made from recycled newspaper or other wastepaper and treated with borates for fire and insect protection (taken from GBA). Dense-packed cellulose is really, just what it sounds like: They pack it like crazy into the wall cavity – but not too crazy. In fact, the ideal balance between too loose and too dense is about 3.5 lbs per cubic foot. If it is too loose it will settle and result in poor insulation over time. The denser it is the more resistance to air leakage (the vapour barrier obviously reduces this further) and the better the insulation. However beyond about 4 lbs per cubic foot of density you are at risk of blow-outs (or the drywallers will not be able to work with your crazy wavy walls).

At 3.5 lbs per cubic foot and with 16″ thick walls, our R-value is a whopping R56 for the exterior above-grade walls!

We contracted a company, Westcan Insulators Inc., who has extensive experience with super-insulated homes and a wealth of knowledge in energy efficiency. At our preliminary meetings they provided us with so much valuable information (have preliminary meetings with all trades presents – it truly is invaluable). It was so reassuring to have them on board, as really in building an energy-efficient home, the insulation and airtightness are the most important aspects. If you don’t have this right, you really don’t have anything.

As Rob Dumont said: “Anything that has moving parts will fail; in fact, it must fail, because there is no such thing as a perfect bearing.” Therefore, passive systems are always better than active systems and insulation and air sealing, if done well, will have the greatest return (for the lowest cost) over the lifetime of the building.

So here’s how the process worked:

On day 1, the crew came in and wrapped the walls with InsulWeb, a mesh that holds the dense-packed cellulose in place while spraying. They go through a buttload of staples to hold this onto the studs. They have to put a staple every inch along every stud, so you can imagine how many staples that would be. Crazy.

DSC_0025

DSC_0028

The next day, they bring out a big 5 tonne truck and using a 3″ wide metal hose they make a hole at one-third and two-thirds of the way up each stud bay. They then proceed to essentially filling the walls with the entirety of the truck. In actual fact, they unloaded about 6000 lbs of insulation into the walls alone (holy crap!).

DSC_0031

Here is a close-up shot of the cellulose and penetration. You can nearly read the newsprint.

DSC_0032

The next day came the vapour barrier and air sealing. This actually took the better part of five days for them to complete, but they did an excellent job (by the looks of it – we will really find out when we test it with a blower door in the next few weeks).

Airtightness is really equally as important as the insulation – perhaps even more so. Air leaking into and out of a building is not efficient no matter how much insulation you have in the walls. They used 6 mil poly for the vapour barrier with acoustic sealant at every seam. Each seam was also taped to ensure another layer of added protection, though truthfully this is probably unnecessary (from what we have been told, with this insulation alone, without the vapour barrier, would surely pass the R2000 airtightness requirement of 1.5 ACH @ 50 pascals), but it’s not hard to do and once the drywall is up you can’t go back and add more.

Around the windows and doors though we spent a bit of money and purchased Tescon Profil tape from 475 Building Performance. The stuff runs at $45 per roll, which is certainly a premium price versus the $9 per roll of good ol’ Tuck tape (the latter of which we used around all other seams). However between the walls and the windows/doors, there isn’t the layer of protection of the dense packed cellulose insulation (although they did spray foam around each window and the rough opening), so we felt the extra price could be justified here (to do the whole house in the Tescon Profil tape would be simply cost-prohibitive [although some people do it]. For the marginal gains you “might” make in airtightness, you would never save enough money on the long-term to justify that huge upfront cost, in my humble opinion).

IMG_3029

DSC_0035

DSC_0036a
Expensive fancy tape.

Water Tank and Foundation Finishing

DSC_0472We finally decided at 1pm on Monday that we were going to do the water tank in the mechanical room. We had went and viewed our neighbours set-up and talked to him about his experience. It all seemed good enough. But meanwhile that morning, the crane had shown up and lowered the giant steel beams into the walls of the foundation.

I had watched the crane go to work in awe like a little kid – “Woah, a crane!” It was pretty awesome to see the crane towering over our trees and lowering the steel beam into the grooves that Taylor and Curtis had left when pouring the concrete a couple days earlier.

It was an impressive sight to see.  The slid in so effortlessly.

DSC_0473

DSC_0476

DSC_0485

IMG_2828

Within a few hours, the guys were hanging the joists and starting to the lay the floor. You’ll notice that the beams and all of joists are within the envelope of the foundation walls. This was intentional from an energy efficiency point of view. There is no thermal bridging at all with this system. Oftentimes typical houses are built with the joists sitting on top of the concrete wall or on a ledger of the wall. Both of these are a bit more work then simply using hangers. And the former, requires excessive use of spray foam to seal.

The way we did it required a taller basement wall, but there is zero chance of air leakage, thermal bridging or heat loss with this.

Anyways, the carpenters were working fast. Crap, Darcie and I realized, we had to decide immediately whether or not we were going to have the water tank in the basement. The carpenters were going to be done the floor system the next day, which meant that the tank needed to go in the basement NOW.

I made some calls and found a manufacturer east of Saskatoon who sold large tanks. We hopped in the truck and  made the 45 minute drive. We had debated briefly about what size of tank to get – essentially everyone we talked to told us to purchase the largest tank that would fit in the house. That meant we could get a 2100 US gallon tank – measuring 88″x88″. If you can’t picture that, well, it’s big.

We drove back to the land and within a couple hours were ready to haul the giant beast of a tank into the basement…

Only problem was the crane was long gone, and there was a huge gorge – 11′ deep and 6′ wide – all around the perimeter of the house. The four of us put our heads together. We all agreed this would have been a LOT better to have done when the crane was here… Crap.

The options were slim. The only possible way was to jimmy up a rickety makeshift bridge between the foundation and the ground using 2x10s and some left over joists. We decided to push the tank off of the trailer (there was no way to carry it) and roll it to the side of the gorge. From there we wrapped two large ratchet straps around the top of the tank and lashed them to the back of my tractor.

Now came the dangerous part – Taylor and Curtis pushed the tank onto the shoddily crafted bridge (one false step would mean certain death or at least dismemberment) while I slowly backed up the tractor thereby keeping tension on the straps and allowing the guys to ease the tank across the “Bridge of No Return.” My wife cringed as she watched the bridge bow under the weight of the tank and guys.

IMG_2833

IMG_2832

Miraculously no one was killed. Not even a little bit.

Once we had the tank to the edge (Taylor had also built a small ramp on the inside of the foundation), I could simply back the tractor up and lower it down.

IMG_2837

That went well.

By the end of the day, the guys had the floor framed – pretty impressive. They’d poured the basement on Friday and floor was framed and sheeted by Wednesday. Time for a dance party.

We all grabbed a beer to celebrate and as we were standing there, an eagle flew by carrying a fish.  We were all in awe and Curtis said “and this is where you guys live?”!  It was awesome.

IMG_2844

PS. One more geek/nerd energy efficiency thing: They wrapped the house in the water proofing seal, but also wrapped it up and around the plywood to create a complete seal around the entire basement. It is possible that a small amount of air leakage could occur through the plywood and the top of the joists and foundation wall. This simple trick tightens the house up even more.