Redo of Blower Door Test

Way back in 2015 before we moved into the house we completed a Blower Door Test. Check out my previous post for a more thorough breakdown of the testing and our rationale for decisions/assumptions. Briefly though, a Blower Door Test assesses the airtightness of a building – basically, how leaky/drafty a building is. It probably goes without say but an eco house should not be drafty. Drafy = bad. Airtightness is rated based on “air changes per hour a 50 pascals of pressure” (ACH). Typical construction in Canada these days reaches about 3 ACH. The Canadian R2000, our high-efficient energy standard, is 1.5 ACH. While the Passive House standard is the most ambitious and rigorous target of 0.6 ACH. These days, pretty much anyone shooting for an energy efficient target has their eyes on the Passive House standard – even if not building a true Passive House per se.

Although that was the ultimate target, when we were building and modelling the house, we’d shot for a modestly ambitious goal of 0.8 ACH (again my prior post for the background information). I was only aware of a handful of houses that had been able to reach 0.6 ACH in Canada and much less that had ever done so in Saskatchewan. Anyways, when we’d originally run the Blower Door Test in 2015 we’d ended up hitting 0.72 ACH – meeting our goal. We were happy with that.

Still after we’d tested, Howard, who ran the test, speculated the results were perhaps not entirely accurate and he’d suggested running the tests again. But one thing led to another and we got busy, life happened and we sort of forgot about doing it again…

That is until this past Spring. I’d written in my last post about having issues with 2 of our exterior doors needing to be replaced due to bowing of the frames (increasing leakiness). When we replaced these we’d also decided to add cam locks to all of the doors to increase the seal and prevent any potential bowing in the future. Surprisingly, we had noticed almost immediate improvement in the comfort of the house. It’s strange but when you have such an energy efficient house any slight deviations from it (that you may not ever perceive in a standard home) become blatantly obvious.

Also, which I did not write about, but around the same time I realized that the locking mechanism on one of our windows was not working at all – basically the window would close but it did not lock (also increasing leakiness). When the service technicians came out to replace the doors, they fixed the locking hardware of this window as well. We asked them to check all of the other windows when they were here and they recognized that a couple of the other windows were not totally centred (several of our windows had to be site glazed, i.e. glass installed in the frames on site as they were too big to ship with the glass in the frame). So they fixed those as well.

I started to think back to the Blower Door Test. I wondered how much tighter our house was now that these issues were fixed? I mean, we actually noticed a perceptual physical change in the airtightness of the house. It felt different, better. How could that not correlate to some change in the actual air leakage values?

I contacted Howard again and asked if he would like to come repeat the test. I was cautiously optimistic about the potential to actually reach 0.6 ACH – the Passive House standard. But I was not going to hold my breath.

IMG-2876

The testing took about an hour or so and I was anxiously awaiting the results.

Drum roll…

The air leakage rates for the house were:
Depressurization: 0.56 ACH
Pressurization: 0.61 ACH
Total: 0.58 ACH

That’s right. We hit the 0.6 ACH Passive House benchmark! Might have been 3 years in the making but we made it. I’m so pleased with the results.

Granted back in 2015, as I said, there really weren’t that many houses that hit the 0.6 ACH Passive House benchmark. There are more houses since that are reaching this standard and I couldn’t be happier that we can now put ourselves in that fairly elite category as well. It makes me very proud of the house and all the people that have worked to reach that level of efficiency.

Processed with VSCO with a6 preset

 

Year 2: Solar Tracking and Energy Use for 2017

Last year, I’d been very pleased with the house’s first year performance, but after analyzing the numbers, I’d thought there was still room for improvement.

Processed with VSCO with b1 preset

With a few tweaks and utilizing our wood stove a bit more, I was looking forward to seeing how we did for 2017 compared to our first year. Let’s find out!


For completeness sake, below are some key stats from my previous 2016 blog post about our energy modelling and actual use:

HOT2000 Predictions:

Annual Space Heating Energy Consumption: 7159 kWh

Annual Domestic Hot Water (DHW) Energy Consumption: 3409 kWh

Annual Appliance Energy Consumption: 8760 kWh

TOTAL = 19,328 kWh/year

PHPP Predictions:

Annual Space Heating Energy Consumption: 7584 kWh

Annual DHW Energy Consumption: 3974 kWh

Annual Appliance Energy Consumption: 11,310 kWh

TOTAL = 22,868 kWh/year

PV Array Predictions (6.2 KW)

PHPP Estimation: 7321 kWh/year

Solar Installer’s Estimation: 9300 kWh/year

Also:

For interest, according to Stats Canada website’s most recent 2011 home energy use data, a Saskatchewan home consumes an average of 30,555 kWh/year (110 GJ), of which electricity for appliance use is 8889 kWh/year (32 GJ).

2016 ACTUAL TOTALS:

Actual Solar PV Generated = 8189 kWh

Actual Household Energy Consumed = 19,000 kWh

Actual Total Energy Used (consumption – PV) = 10,811 kWh


We did pretty darn good in 2016, actually coming in under the estimated values with the exception of the higher end of the solar production (though that is the manufacturer’s estimates so probably these are the “best case scenario” numbers anyway).

So how did we do for 2017?

2017 ACTUAL ENERGY CONSUMPTION AND PV GENERATION:

January: Solar generated = 250 kWh vs. Energy Use = 2979 kWh

  • A dramatic difference no doubt. But I was not surprised given I had 2016 to compare, it’s January in Saskatchewan after all. Still our energy use was less than the previous year (by almost 400 kWh) so we were off to a good start.

February: Solar generated = 378 kWh vs. Energy Use = 1258 kWh

  • This is when I did my experiment. We kept the boiler set at 65°F and tried to burn wood as much as possible. There was a more than 50% drop in energy use (electric) from 2016.

March: Solar generated = 695 kWh vs. Energy Use = 1652 kWh

  • Pretty much the same as 2016. We kept the boiler set a bit high at 68°F (65°F is too cool first thing in the morning!). But it was starting to get warmer this month. Note that we used over 400 kWh more this month then February – due to less wood heat, even though the outdoor temperatures were rising.

April: Solar generated = 736 kWh vs. Energy Use = 1125 kWh

  • April kind of sucked. It was cloudy and not very Spring-like at all. Many days were around the freezing temperature still.

May: Solar generated = 1143 kWh vs. Energy Use = 840 kWh

  • Hot month and hit the net positive energy production one month early as a result.

June: Solar generated = 1092 kWh vs. Energy Use = 708 kWh

  • It was a hot and dry month and I watered the garden nearly every day which uses a fair bit of electricity to run the water pump at the river.

July: Solar generated = 1112 kWh vs. Energy Use = 575 kWh

  • It was really hot again in July. Only 2 or 3 days of rain all month.

August: Solar generated = 982 kWh vs. Energy Use = 643 kWh

  • Almost completely opposite weather to 2016, which was extremely rainy. This month was HOT and DRY.

September: Solar generated = 744 kWh vs. Energy Use = 662 kWh

  • Finally started to become seasonal temperatures in September. But still remained Net Positive for energy use.

October: Solar generated = 555 kWh vs. Energy Use = 771 kWh

  • Last October (2016) was terrible – snowing on October 4th. This October was more normal and as such, our energy use was 50% less than 2016 (1478 kWh). I did turn the boiler on for the basement heat, but not on the main level.

November: Solar generated = 234 kWh vs. Energy Use = 1569 kWh

  • It snowed on November 1st and stayed snowy and cold until the last week of the month when it got above freezing and melted a lot of the snow off.

December: Solar generated = 291 kWh vs. Energy Use = 2229 kWh

  • December was extremely cold again with several days of -40°F. Good fun. But still used way less energy then 2016 (almost 600 kWh less!) despite it being a similar month weather-wise.

ACTUAL TOTALS:

Actual Solar PV Generated = 8212 kWh (Comparison 2016 = 8189 kWh)

Actual Household Energy Consumed = 15,011 kWh (Comparison 2016 = 19,000 kWh)

Actual Total Energy Used (consumption – PV) = 6799 kWh (Comparison 2016 = 10,811 kWh)


Shheeeet! That’s good! I was pleased about 2016, but 2017 was awesome. That’s a 4012 kWh reduction of our electrical energy use from the previous year. And at $0.12/kWh that works out to a $481 saving for the year.

Granted we burned more wood this year than last. I’d estimate we burned around 3/4 cord of wood in 2017 compared to about 1/3-1/2 cord in 2016. But at $250 per 1 cord that’s still a good savings. My February experiment had the biggest single month change with mostly burning wood. I have no idea how to factor in the equivalent energy. Obviously it’s not zero. Maybe another post if I find some information on it.

Even so, almost every month we improved from the prior year. I think part of that was us getting used to the functioning of the house and getting our house thermostat temperatures dialled in better at least in the winter. As for why it was still less energy use in the summer months, well, I’m not sure?

Our solar generation was almost identical to the 2016 which was good to see.

My favourite comparison though is to the Canadian home average of 30,555 kWh/year. At 15,011 kWh, our house used 50% as much energy, while factoring in solar use, it’s at 78% less energy use then the average house. High fives!

Also we were again, way under the predictions of both the HOT2000 (19,328 kWh/year) and the PHPP (22,868 kWh/year), which is pretty sweet. Again, I have to wonder how close we would have come to meeting the Passive House standards had we made sure to reach the 0.60 ACH airtightness benchmark…

Processed with VSCO with b1 preset

Speaking of airtightness, in January (2018) we made a few changes to our doors to try and get a better seal.

I wrote in the “everything is perfect” article how we’d had issues with bowing of two of our three doors from Duxton. I’ve been really happy with the service of Duxton and they’ve been out to our house a few times now to tweak and make some changes to help optimize our house’s performance this past year. But the doors had been a problem since the beginning with not getting a great seal on top and bottom corners. In an apparent airtight house, leaky doors is not something you want. Due to the bowing of the door frames, Duxton offered to replace the doors at no charge. Still, we had some issues with getting a really tight seal even after replacement.

Duxton now offers multi-point locking doors which, like it sounds, have multiple latches that create an extra tight closure. Unfortunately, I didn’t know they were available at the time or they actually weren’t available yet when we ordered our original doors, either way a deadbolt with one single 1″ contact in the middle of 6.5′ tall door, inherently doesn’t create an optimal closure. So what were our options? We did chat with Duxton briefly about pulling out the doors and retrofitting them with their multi-point doors, but the labour and extent of work to do so was going to be terribly extensive. Instead, we went with a simpler option: cam locks.

IMG_6133

We had them install two of these low profile cam locks on each of the doors: one at the top and one at the bottom. Immediately we’ve noticed a difference. The house felt… snugger. We’ve also noticed a significant improvement in the heat retention of the house overnight. It does not cool off nearly as quickly at night, even on the -40°F/C nights. It’s tempting to have another blower door test done as I’m certain there has been a fairly dramatic improvement with this simple fix. I wonder how much under 0.72 ACH we’d be now…

It’ll be interesting to compare the above numbers with 2018. I’m not expecting as dramatic a change from this past year as I’m not going to burn as much wood – just what is comfortable for us. But I think the change in airtightness will have really positive effect. We will see.

The February Experiment: Heating with Wood Fire

After writing my last post, and happily confirming that our house had exceeded our expectations for energy use for 2016, I’d made the comment: Based on the predicted numbers, the heating energy likely accounts for about 50% of our overall energy use. Makes me wonder too how much better we could do if we burned wood a bit more often?”

I’d written that without thinking about what that would mean too much. But after re-reading my post I got thinking, ‘Hmm… what if we did burn wood more?’

We tended to keep the thermostat around 70°F in the winter, which was comfortable, but would still allow us to have a wood fire on occasion and warm the house up to 73-74°F. It’s not that we really needed it, we just liked it. The in-floor hydronic heat can certainly meet our heating requirements. But we’d figured the wood stove would always be our back-up heat in the event of a prolonged power outage or in extremely cold weather. BUT – what if we flipped it and tried a little experiment? Make the wood stove our primary heat source and our in-floor heat the back-up. I’d also received our most recent bill from the power company which advised that our electrical rates had gone up 3% for 2017…so…

Impressively, my wife was game for the idea too. So, on February 1st, we turned the boiler way down, to 65°F, and started loading the wood stove.

My objectives for the month were:

  1. To determine if we would love/hate or be impartial to the need to fill the wood stove in the morning and night.
  2. To determine if we would be comfortable with the house temperature we could maintain.
  3. To determine how much electrical energy we could save by using wood as our primary heat source.

First off, I love our wood burning stove from Morso Denmark. And I love fire. Who doesn’t really? Isn’t their something primordial about sitting around a crackling fire with friends and family? We’d had it a mandatory requirement from day one of the house planning that we would have a wood burning stove in the main living space.

fire2

I’d only ever seen one house with the stove in front of the windows and I think it is a brilliant spot. It doesn’t obstruct our view during the day, but at night the fire gives a nice focal point to the room. This placement also allows it to be viewed from the kitchen, dining room and living room and extend it’s heat range to the bedrooms on the main floor.

We have a wood nook directly opposite the wood stove that is 24″x84″x20″ which contains the mess and also adds another interesting feature to the room.

living1

But enough about design and aesthetics (although I do want to write about that again sometime), let’s talk about function.

My goal was to keep the house around 69°-72°F during the day and a bit cooler at night while we slept.

The month of February was an interesting temperature mix. The first week was stupid cold (-30 to -40°F/C). But then typical for SK, it warmed up to above freezing temperatures for mid-month and then dropped to seasonal temperatures for the last week (-15°C or 5°F). This made it actually a very convenient month to test the wood heat giving us a fair bit of variety.

The first week (very cold week) we burned through the entire wood storage nook. This was surprising to me as I’d only filled it twice the entire winter beforehand! We were going to use up some wood. Basically what I would do is start a fire when I got up (it was good reason to get up and not to hit the snooze button too). The house temperature was around 66°F or 68°F most mornings. I’d get it hot, then load it up and turn the damper down before work. Passive solar gain would keep the house reasonably warm during the day and when we’d get home the house was usually about 69°F. We’d start the fire again and keep it burning until we went to bed, usually trying to get the house temperature up to around 74°F. Again, I’d load up the stove and turn the damper way down before tucking in.

I actually didn’t find this nearly as much work as I thought I would. In fact, I liked it quite a lot. Certainly it’s more work then just getting up and doing nothing, but it really wasn’t bad.

By the second and third weeks, we were in our groove, and the outside temperature was mild. We used half as much wood and the house stayed above 70°F most days and nights, which was higher then we’d had the boiler set at before.

In the last week, we used a bit more wood again, but it didn’t seem like much work. I ended up loading the wood nook three times for the month in total.

We had pine, tamarack, maple and poplar wood that we burned for the month. The pine and tamarack had been what we’d mostly been using for the winter. It’s a soft wood, but has high BTU output, so it burns hot, and also burns quickly. It’s good for a quick warm-up if the house is cooler, but it doesn’t give that prolonged slow burn you might want at night time. It does however burn clean, not giving off a lot of smoke and ash. Maple is a bit better for the prolonged evening slow burn given that it is a hardwood. While the poplar, well, it’s crap. I regret burning it. It’s a dirty wood, very smoky and lots of ash. It’s BTU output is crap too. Oh well. Now I know.

wood

OK so for objectives #1 and #2, I realized that I was generally impartial to the work of loading the stove. We loved the wood heat though. It was comforting and, in fact, most days the house was able to stay above the typical 70°F temperature we’d had the boiler set at previously, which was a nice bonus. Some of the really cold days when you’d wake up to 66°F inside were a bit uncomfortable for the first few minutes until the wood stove got things warmed up. Also, I didn’t really want to be in bare feet on the concrete floors. Even though the house would be warm, we generally would wear slippers.

Now, the big question was, was the extra time/effort worth the energy savings?

This was something that I was most interested in and there was no way to know for sure until I checked out power at month’s end. I’d had the data from 2016 so it was easy to compare the numbers. Based on my notes from February 2016, it was a similar month in terms of average temperature, however as you will see, there are some significant differences. I’m fairly confident that a direct comparison from February 2016 to February 2017 is reasonable. So what did the numbers show? Let me tell you:

February 2016: Solar generated = 553 kWh vs. Overall Energy Use = 2706 kWh

February 2017: Solar generated = 378 kWh vs. Overall Energy Use = 1258 kWh

First off, I was shocked at the overall energy use! It was a massive drop from the previous year. That’s a 64% drop in electrical energy! Wow. I  really did not expect that. And as you can see it’s not like we had an especially sunny month by any means, the solar generation was actually one-third less than last year so we weren’t even getting much passive solar heating.

Needless to say, I was very pleased with these results. When I crunched the numbers a bit more, the cost savings were $177.00 (1448 kWh x $0.12224/kWh)! In a single month. That’s awesome.

Roughly taken over the course of an entire winter that could be upwards of $1000/year in energy savings if we burned wood regularly. And now, well, I’m seriously considering doing just that…

fire3

 

How Were Our Energy Predictions? An Analysis of the First Year Energy Use: Solar and Energy Performance

bwhouse

We had spent a lot of time planning and designing a house that would be energy efficient, aesthetically pleasing, and cost effective. This is a fine balance to try to find. However, it really is a big guessing game until you actually live in the space and track it’s performance. You can run all of the computer programs you want, but you really don’t know how things will be until you’re in and living your normal life.

We had installed PV solar panels on the house to combat some of our energy use with the hope that someday we could work towards a Net Zero home, but this too, seemed to be a big guess as to how well it would perform.

In the planning and designing stages of the house we ran a couple different energy models on the house. The first is called the “HOT2000” program. “HOT2000 is an energy simulation and design tool for low-rise residential buildings.  This software is widely used across Canada to support program, policy and regulatory development and implementation.  HOT2000 is developed and managed by the Office of Energy Efficiency at Natural Resources Canada” (NRCAN). It was originally designed for use with the R2000 energy efficiency program, which was an early promoter of green home building in Canada.

We later used the Passive House Planning Package (PHPP), which is now the widely used software program for building highly efficient homes worldwide.

My intent with this article is to report the varying predictions of the these two programs, as well as our predicted solar generation, and also to show our actual energy use for the year of 2016 – our first full year in the new house. I’ll also report some considerations and possible options for the future.


1: PRE-BUILD ENERGY MODELLING

I had been very curious about this when we were in the early stages of planning the house. Most of what I read was the predictions of various homes, but I’d only come across one house that actually tracked and reported its energy use – that being the Mill Creek Net Zero House in Edmonton, AB, Canada. Which, although using exceptionally little energy, did not meet it’s net zero target. That being said, it was very close.

I fully did not expect our home to be anywhere close to net zero, but we hoped that over the next number of years we could gradually build our solar panel array (as costs come down) to eventually reach our goal.

OK, let’s get to the numbers:

HOT2000 Predictions:

Annual Space Heating Energy Consumption: 7159 kWh

Annual Domestic Hot Water (DHW) Energy Consumption: 3409 kWh

Annual Appliance Energy Consumption: 8760 kWh

TOTAL = 19,328 kWh/year

PHPP Predictions:

Annual Space Heating Energy Consumption: 7584 kWh

Annual DHW Energy Consumption: 3974 kWh

Annual Appliance Energy Consumption: 11,310 kWh

TOTAL = 22,868 kWh/year

PV Array Predictions (6.2 KW)

PHPP Estimation: 7321 kWh/year

Solar Installer’s Estimation: 9300 kWh/year

So obviously there are discrepancies between the HOT2000 and the PHPP. Although their prediction of Heating and DHW are quite close, surprisingly the Appliance use was significantly different. Also, surprising was the discrepancy in the solar predictions – I was a bit disconcerted by the drastic difference of 2000 kWh/year!!

For comparison’s sake, according to Stats Canada website’s most recent 2011 home energy use data, a Saskatchewan home consumes an average of 30,555 kWh/year (110 GJ), of which electricity for appliance use is 8889 kWh/year (32 GJ).

Drum roll please.

… Actually first, some clarifications. All I have is our actual overall energy use. I cannot separate out Heating vs. DHW vs. Appliances unfortunately, although this would be interesting. The following information is taken from the solar panel’s generation and the Electrical meter. I tracked each month and have recorded it below.

OK, now the drum roll.

solar


2. ACTUAL ENERGY CONSUMPTION AND PV GENERATION:

January: Solar generated = 315 kWh vs. Energy Use = 3323 kWh

  • Yikes! I was a pretty worried when I saw this. That being said, January was very cold and has very short, dark days (-20° to -30°Celsius most days. We kept the house around 71°F).

February: Solar generated = 553 kWh vs. Energy Use = 2706 kWh

  • February is always a cold month. Although you can see the solar was getting a bit more sunlight already as the days lengthened.

March: Solar generated = 603 kWh vs. Energy Use = 1716 kWh

  • This was getting a bit better still. I lowered the house temperature to 69°F. It was getting warmer outside and more solar gain.

April: Solar generated = 979 kWh vs. Energy Use = 1385 kWh

  • April was warm and sunny. Nice spring weather. Started to not need the in-floor heat on at all during the day, but still ran it during the night.

May: Solar generated = 960 kWh vs. Energy Use = 1029 kWh

  • Almost net zero for the month. It was a very nice month. We were running our river pump frequently to water new grass, which I think increased energy use quite a lot.

June: Solar generated = 1434 kWh vs. Energy Use = 989 kWh

  • Net Positive in a big way. Beautiful month. Obviously the longest days of the year.

July: Solar generated = 956 kWh vs. Energy Use = 511 kWh

  • The first two weeks of July were cloudy and rainy which is unusual for July.

August: Solar generated = 950 kWh vs. Energy Use = 645 kWh

  • This month was very rainy as well, which again, isnot normal. Usually August is very hot.

September: Solar generated = 778 kWh vs. Energy Use = 611 kWh

  • Cool and cloudy. I replanted grass seed and was running the river pump a lot again.

October: Solar generated = 315 kWh vs. Energy Use = 1478 kWh

  • October sucked!! 315 kWh is the same as January! It snowed on October 4th. We had to turn the heat back on. There were only 2-3 sunny days all month.

November: Solar generated = 390 kWh vs. Energy Use = 1750 kWh

  • Cloudy month, but had some mild days mid-month with above freezing temperatures. Still, we generated more solar in November then October, which should not happen.

December: Solar generated = 229 kWh vs. Energy Use = 2857 kWh

  • Shortest days of the year and extremely cold (-40°F). What do you expect?

ACTUAL TOTALS:

Actual Solar PV Generated = 8189 kWh

Actual Household Energy Consumed = 19,000 kWh

Actual Total Energy Used (consumption – PV) = 10,811 kWh


3. DISCUSSION

I’m extremely pleased with these numbers! I’ve been waiting for two and a half years to know what our actual energy use would be.

We actually used less overall energy then was predicted by both the HOT2000 (19,328 kWh/year, although it was close) and a LOT less then PHPP (22,868 kWh/year), which is surprising that it was so off… It makes me wonder how close we would be to meeting the Passive House standard given the actual energy use is 3868 kWh less then it predicted… Hmm. Maybe we should have tried to hit that airtightness target of 0.6 ACH after all. Oh well.

Nonetheless, the overall energy use of 19,000 kWh is very good (and such a nice round number too!). We did not do anything different in terms of our behaviour except to just be smart and not be wasteful. I still baked bread every weekend and we used our larger appliances just like we normally would. We have two refrigerators and two deep freezers in the house. All the lights are LEDs. We try to hang our clothes to dry. We used our wood stove occasionally, maybe 2-3 times per week, but mostly just for ambiance and occasionally on the extremely cold days. That being said, based on the predicted numbers, the heating energy likely accounts for about 50% of our overall energy use. Makes me wonder too how much better we could do if we burned wood a bit more often?

As for the actual solar PV generation (8189 kWh), it pretty well split the difference between the installer’s predicted 9300 kWh/year and the PHPP prediction of 7321 kWh/year. I think this past year was on the cloudier side for sure. We had a lot of rain in the Spring and even more in the Fall, which is very unusual. Followed by an extremely early snowfall which seriously cut into our PV generation (see October – brutal). It probably would be closer to the installer’s prediction on a typical year (will have to see what 2017 brings).

Still based on the actual numbers, our solar panels did cover nearly 45% of our overall energy use for 2016. We would however need to double our solar panels (add another 6.2 KW array) to meet Net Zero with consistency year to year. Who knows, maybe in the coming years the costs will drop more and perhaps government incentives will increase. One can hope.

Comparing our house to the average Saskatchewan home consumption of 30,555 kWh, we did very well. Using 37% less energy then the average home. And when you take into account the solar energy generated that drops us further to using 65% less energy then the average house! Sweetness.

Considering that we are completely on electric energy, it makes sense to make the house as energy efficient as possible. The cost of electricity for us is $0.12224/kWh (while cost for natural gas power is about $0.04/kWh equivalent), which works out to an electricity bill of $1321.54/year (10,811 kWh x 0.12224). We do however have to pay a basic service fee of $32.61/month (even when we are net positive in a month) which sucks and then 5% tax. That brings our absolute costs for the year to $1798.50/year or $149.88/month, which is about half the cost of our previous homes power and electricity bill. I’m ok with that.

throughthetrees

This post was updated on March 4, 2017. 

Floor plan: the long-winded version

I’ve had a few questions over the last number of months about our floor plan. How we decided on things and why. Way back before we started construction I’d wrote extensively about the design and planning of the house. It wasn’t easy! We thought we knew exactly what we wanted initially. But it really wasn’t until we had 13 designs/redesigns that we felt really good about the house we were going to build. If you’re curious about that process, please read the links as I go into a lot of detail about the process, decisions, considerations and some of the struggles that went with that.

Despite all of that prep work, it’s really difficult to fully imagine what the house will be like, how it will flow, and if you will have any regrets (even if you have a 3D walk through), until you’ve actually lived in it. We spent 10 months planning and designing the house and I’m glad we took that much time to do it (I’m grateful for the patience of our house designer and friend, Crystal at Bldg Studio). We maybe could have even spent longer, but I’m not sure that we’d have changed anything. Nearly all of the things I’d, let’s say “tweak” if I could, I don’t think I’d have realized until we’d actually lived here awhile. The funny thing is, and I’d been told this before, after you build your first house you’d know exactly how you’d want to build your second house. Don’t get me wrong though – I love our house and I’m so happy with so many of the decisions we made early on, but I think I’d know how to make our next house even better (or maybe by the third or fourth)…

Anyways, my plan here is to show you our floor plan and then walk through some of the things I’d change if I were to do it again.

The first and most important thing was to not build too large. We wanted a quaint, modern farmhouse. We’d lived in a large house (6 bedrooms, 4 bathrooms) and it was just too much – too much space, too much stuff, too much cleaning. Between that house and the new one, we lived in a very small 600 square foot cabin with two small bedrooms and 1 bathroom for 14 months while we built. The cabin was too small, but we realized that we didn’t need as much space as we thought we might.

After 13 house designs, we finally settled on the following, a bungalow with a full height basement with a main floor square footage of 1440 sq.ft. to the exterior walls (remember our walls are 16″ thick) which equalled an interior floor space of 1240 sq.ft. The interior basement space is the same size, so that gives us an overall heated interior floor space of 2480 sq.ft. The ceilings are 9′ in both the main floor and basement.

Ok so onto the floor plan. For reference’s sake to the proceeding floor plan, the house is square to the four directions: top is North, bottom is South, left is west and right is east. On our land the best view, facing the river, is south and east. We have a shelter belt of trees (spruce, pine, and amur cherry) blocking the prevailing winds from the North and West. Our yurt and chicken coop are about 50′ from the west door (left side of picture). The edge of the river is 160′ from the south/west corner of the house (including hillside).

We wanted to have the house feel very open and connected to the beautiful surrounding landscape so it’s really difficult to fully understand the layout of the house without seeing where we live…

This is our front yard:

So when designing the house, our priorities were: 1) to maximize the connection to the land and views, 2) to optimize our energy efficiency, and 3) to be cost effective.

Main Floor:

floorplanmain

The main door is on the north east corner. We have a driveway that comes to the back of the house (north side) and in the next year or so we will build a detached garage on the north side of the house. One thing that bugs me in some homes is a main entrance that opens into the heart of the house, like right into the living room. I don’t like that. It seems like such an invasion of privacy to me. Not that we get many strangers coming to our house, but even still I find it very nice to be able to greet people at the door, give them lots of room to take their jacket and shoes off and then allow the house to be “introduced” or revealed to them as they’re welcomed into the main living space. The one thing I would change in the entrance way now is I would have made the window smaller. It faces east and is a beautiful view and brings in some awesome light, but it doesn’t need to be as big as it is (48″ wide). Being east facing it’s an energy loser for us. Oh well.

As you come into the house from the main entrance, the space really opens up to the great room which is essentially, a large wall of windows. The south facing windows are all 16″ from the floor and are 68″ tall (this was purposeful so that the top of the doors line up with the top of the windows creating a continuous symmetrical line around the house). They let in a tonne of natural light and frame the river and river bank. They also function for passive solar heating in the winter. The windows are like a massive, constantly moving and changing landscape portrait (we don’t need any landscape portraits in our house!).

I will say that we purposely put the small half bathroom near the main entrance for two reasons. The first was that we did not want a door coming off the main space to a bathroom. That’s gross. Second, we spend a lot of time outside, we get dirty, and we did not want to be tracking mud and dirt into the house to use the washroom.

We placed a large storage closet in the hallway leading to the great room, which stores our recycling, vacuum, dog food and a bunch of other miscellaneous stuff. Don’t underestimate the amount of storage you need! It’s the difference between a cluttered or a clean house.

The great room includes our kitchen, living room and dining room. This is where we spend 90% of our time. I love this space. We’d actually debated about about not doing an “open” kitchen, but I’m so glad we did it this way. The kitchen really is the heart of the home. We have friends and family over almost every weekend and I cook a lot. There’s nothing worse then being stuck in the kitchen while all your friends are visiting in the other room. This way, I can be preparing food while still visiting with everyone and often now people are willing to pitch in and help with food prep and cleanup. Success.

The kitchen island is 8’x3′ with an induction cooktop. We have a floor to ceiling pantry, and cupboard with a built-in fridge, microwave and oven behind the island. I highly recommend extending the cupboards to the ceiling. I’ve never understood why some people stopped their cupboards at 7′ and then have an awkward space between there and the ceiling which simply collects dust. We use a small step ladder to reach the top cupboards which stores those occasionally/rarely used kitchen appliances we all have. In the northeast corner of the kitchen is open shelves which holds glasses, coffee cups and some pretty things. We’d been hesitant about open shelves, but I think in the right amount they look great and are very practical. The kitchen sink faces an east window overlooking the river. Having a window with a view in front of the sink makes doing the dishes so much more enjoyable. We extended the east counters and lower cupboards nearly all the way to the corner window to maximize our storage space. All of our lower cupboards are drawers and they are great. The window seat also has drawers underneath for more storage. We do not have any upper cupboards or shelves on the east wall. It is very clean, tiled from counter to ceiling. Our total counter space is around 15′. In the book “The Pattern Language” (which we relied on heavily for the design), Christopher Alexander recommends a minimum of 14′. I’d thought that was excessive initially, but I’d say he’s bang on. I can be baking bread, fermenting sauerkraut and kombucha, have a sink full of dishes and ones drying beside it, and still have plenty of room to prepare dinner.

On the other side of the island we have three stools and on the end facing the sink is an open lower shelf to store our heavy cast irons pots. Check out this post for a photo tour of the kitchen.

The dining table is between the island and the south windows. The table is 101″ by 33″ and seats 10 people comfortably. I have to admit I had no idea if our spacing was going to be right until the day we moved our table and chairs in and had our first meal. This is the difficult part about designing a house – how much space do you leave between things? It is such a subtle amount, we’re talking 1-2″ of space that will make something comfortable or cramped. I’m glad to say that we nailed this though (thanks in large part to my mother who is an interior designer and helped us with all of these tricky spacing decisions). But when designing your own house these are the decisions that make a huge difference – and you need to know your furniture. For example, can you have someone sitting at the island on the stool and someone sitting on a dining chair behind them and still have room for some to walk between them? Trust me, I would be so annoyed if I couldn’t do this.

The rest of the great room is occupied with the living room, which includes a lounge chair, sectional couch and area rug. I’ve never been a big fan of area rugs before we lived here, but putting a nice wool rug down (especially on concrete floor), not only is nice for your feet and to give kids an area to play (“don’t leave the rug!”) but it also differentiates space nicely. We placed the wood burning stove in front of the window. When people had looked at the plans initially they’d said, “you really want to do that?” I have to say that this is one of the best decisions we made. The stove is a very attractive Morso stove from Denmark. A lot of people will tuck a stove into the corner of a room, but I love a wood burning fire and again, as written in “The Pattern Language” (have you bought it yet?), all people in the space should be able to see and enjoy the view and heat of the fire. Also, the stove does not block our view by any means, if anything, it makes it more interesting.

I will also say one more thing about the height of the window sills – this was very intentional, placing them at 16″ creates the same height as your standard dining room chair. This way you have natural bench seating throughout the house.

Behind the couch on the far west wall of the great room is a nook for our amp, record player, speakers and LPs. I’m glad that we added this, but my only regret on this space is we could have made the whole room about 10-12″ wider, which would have allowed me to put a narrow credenza or bookshelf behind the couch. Oh well – next time!

The door on the south side is mostly glass and leads onto our large deck.

The master bedroom is not overly big. We had had a gigantic, massive bedroom before and it just seemed unnecessary. I just sleep here. We did not put in a walk-in closet. We had one before, but it allowed us to collect more clothes that we didn’t wear. Having enough space is good, but having too much space you can lose track of what you have and eventually you realize you have a tonne of junk you don’t wear and don’t need. I like the closet size. There’s more than enough room for Darcie’s and my clothes but if we fill it up then that means we need to get rid of stuff. The window in this room is really big. It’s cool, but it is unnecessarily large. I like being able to wake up to the sun and see the river while I lie in bed, but it doesn’t need to be as wide as it is. It could easily be three-quarters to half the size and still give us the things we like about it.

I do wish that we could have found a way to put in a laundry shoot. I know that a lot of places don’t allow these, but we could have done it where we are.

We did not do a true ensuite bathroom. This was done for a couple of reasons, the first was that we wanted the shower and bathroom to be accessible for whoever is in the second bedroom. Typically if you have an ensuite you need another bathroom on the same floor with a tub/shower. I don’t know about you, but I’m not a big fan of cleaning bathrooms all day. I did that in our old house – remember, we had FOUR bathrooms! So unnecessary. We also wanted the shower to be close to the outside door so that we could come in, strip off our clothes and go right into the shower – we are dirty people out here. The bathtub is the old clawfoot tub we refinished which is a real beauty. I love the double-sink and the large vanity. No more are Darcie and I trying to push each other out of the way for sink or mirror space – it will save your marriage! We also put in a “water closet” which is the tiny doored room in the bathroom for the toilet. We had this in our 100 year old house and it was very smart. Do you know how disgustingly dirty toilets can be when flushed? Yucky.

And yes, we have an outdoor shower.

The second bedroom is a fun little room. It’s not a perfect square due to the stairs on the north side of the house. Currently it’s Darcie’s sewing room, but it will make a fun kids room. There is an option of extending the raised platform to make a sleeping space under the window or to put bunk bends towards the other end. Kids love nooks and alcoves (according to both my childhood memories and “The Pattern Language”) so the raised platform above the stairs, walled on three sides gives a nice little space to cozy up and read a book or hide away.

I really like the side door at the end of hall leading to the coop and yurt. It is glazed like the door leading to the deck so it brings nice light into the hallway, but it also has a small transom window above it that opens. This way we have cross-ventilation through the whole house. From the transom to the operable window above the kitchen sink and from the north side window (at the top of the stairs) to the small operable window adjacent to the wood burning stove.

Phewf! That took longer than I thought to write about. OK, onto the basement.

Basement:

floorplanbasement

At the bottom of the stairs is a wide landing about 6′ wide. This is wider than your standard hallway by quite a bit. But, in a basement it’s nice to feel like you are not tunnelling under ground or in some dark space, which basements can often feel like. The ceilings are very high, just over 9′ tall, which makes it not “feel” like a basement. We also placed large windows on the east side and one on the south, they are 5′ and 10′ wide. We did not put more south windows down here due to the deck above.

The first room at the bottom of the stairs is the cellar. This is an unheated space, but not sealed from the rest of the house. We’d considered making it a true cold room with venting to the outside and we could still do this, but I’ve been reluctant to do so as I’m worried it will be a big energy draw to the rest of the house, even if we totally seal it. Also, with a fridge and freezer in there I question whether it would even be cold enough with venting. Currently it primarily functions as a large pantry with lots of shelving for dry goods. Living outside of town it’s nice to have a bit of stock pile of food including canning that we’ve done.

We wanted a large laundry room with a sink and cupboard space. It’s very nice to have a contained space for this and a place to hang clothes to dry and do ones ironing. It is also easy to let stuff pile up and simply close the door on it!

The mechanical room is really big, but it also holds our water tank. Now that we’ve lived with the water tank and I’ve recognized my dread of having 2000 gallons of water leaking into my basement – doing it over, I’d likely put the tank underground in a cistern outside with a pipe leading in. That way if anything were to fail with the tank, well, it would just water my grass rather than flood the basement. We might still change this at some point down the road, but of course, it is always more work and money after the fact.

The family room is also very large, nearly the same size as the “great room” on the main floor. You might we recall that we have exposed concrete walls in the basement and exposed steel beams so this definitely has a pretty industrial feel down here. We have a TV and sectional couch (and area rug) in the corner against the wall of the mechanical room. The rest of the space is fairly open although Darcie has a large weaving floor loom on the other side… It would be a perfect size for a pool table, but Darcie disagrees.

The bathroom down here is really cool. I’d wanted to do a Japanese bath, like a real hand-built wooden tub, that is, until I found out the cost is ~$9000. Scratch that. Instead we found a deep round two-person tub that we wrapped in cedar. It is open to the shower that is also open to the rest of the bath. Here’s a photo I took awhile back. I like the other bathrooms in the house a lot, but this one is rad.

Under the stairs is another cellar, this one is where I make my beer and wine and where we let the ferments sit. I’ve put a bunch of shelves under the stairs for storage. Can’t have enough storage, I tell ya.

And lastly, is the basement bedroom. This bedroom is pretty bad-ass with two walls of exposed concrete. Teenager-me would have loved this room (I still do, but I would have really loved it then).


 

All in all. We really are happy with the layout of the house and the planning time we spent to get it as “right” as possible. Sure there a couple minor things we would have changed, but they certainly are not major things. It’s not easy to get it perfect – in fact, it might be impossible. But I’d recommend when planning and designing your house to tour as many homes as possible. If you get into a space that feels good, try to analyze what it is – is it the window placement, the size, the spacing? Take measurements of your furniture and make sure your architect or house designer lays out your rooms so that you have proper spacing. Measure your favourite rooms in your current house or the houses that you go into and say, “Oh I like this.”

Buy and read “The Pattern Language.” It is worth it’s weight in gold.

Talk to people who have built and ask them what they “nailed it” on and what they wish they would have done differently (everyone will have at least a few things). Do smart things. Design it for yourself. Don’t design it for someone else or “resale value.” That’s silly. But, at the same time, I’d caution you against doing something very “out there” – unless you’ve done a lot of houses before and you’ve evolved to the “out there” point. You never know, your first home build, well, it might not be your last.

Once you go black…

We’d really hummed and hawed about what to do about the basement parging for most the winder and early spring. Although our plan had been to do the house all black initially.

 

HouseRenderHeader

But last year we’d hesitated. And I’m not entirely sure why. We couldn’t run the wood siding all the way to the ground, like the rendering shows, because of the 8” of foam on the exterior basement walls without some seriously extensive strapping. Alas we had the stucco guys parge the basement foundation and then leave it while we contemplated our options: leave it or go all black.

IMG_3219

While taking photos for the post about the concrete retaining wall, Darcie, my wife, said, “The house doesn’t look right. It looks like it’s floating. It’s weird.” She proceeded to spend the next several days playing with Photoshop, filling the gray parging with black and analyzing it from multiple angles. After a week of scrutinizing the Photoshopped images, she said, “Look. We should do this.” Pointing to an all black house.

If there’s one thing I’ve learned is that once my wife has made up her mind, it’s best not to disagree. It is only futile afterall. “Yes honey,” I replied (these two words are the most important for a husband to know, by the way).

So I called the stucco guys and asked them to come back. It ended up taking a number of weeks for them to finally show up (typical). But only a couple hours for them to transform the house.

IMG_4074

 

I gotta say, I don’t know why I’d hesitated, because once your go black… well, you know the rest.

IMG_4096

IMG_4089

Musings on Passive House Standards and the Costs of New Home Construction, Part 3

If you have not yet read my posts (rants) in Part 1 and Part 2, maybe check those out first.

Have you heard of the Pareto Rule before? It’s more commonly known as the 80/20 Rule. It says that for many events, roughly 80% of the effects come from 20% of the causes.

I think that Passive House (PH) follows this rule to a T. It has certainly been our experience in building an extremely energy efficient home and following the principles of PH. I believe that 80% of the benefits of PH come from about 20% of the cost and effort (from Part 1 of these posts, I noted that our financial cost was about 8% more than a standard house construction). Whereas to get that last 20% to the hit the PH certified requirements, you’re going to have to spend 80% more… At least this was my assumption.

Still being the curious person I am and because I kept getting asked about it… I just had to know. How close does our house come to the PH standard?

The only way to find out would be to either track the house over the next year or to have someone run the house through the Passive House Planning Package software (PHPP) to predict our values.

As you may recall, we were never pursing PH certification, right from the beginning we were told the cost-effectiveness (80/20 rule) was just not there. Maybe if there was some incentive or rebate for going full-out, one could justify it. We were also told that there was no need to use the PHPP as it was too expensive. This latter statement however is simply not correct.

I decided to ask around and see who could put our house through the PHPP for us. Or at least get a price quote for it. Maybe it would be too costly and so I wouldn’t bother if it was. After a few emails, I was eventually referred to a very well-respected PH consultant out of Alberta – Stuart Fix at ReNu Building Science. I sent my email explaining that we’d already built the house and so really can’t change anything now, but due to curiosity I was wondering if he could run the house through the software. No problem he said. The price we were given was entirely reasonable and was actually less than what we had paid to run the house through the inferior HOT2000 software prior to building. Crap!

After a couple weeks we received the results, not surprisingly: we weren’t a Passive House. But the results on the various aspects of the house were very interesting and lead to some interesting points of discussion.

Based the three criteria for PH certification, recall:

  1. Space Heat Demand: max. 15 kWh/m2a  OR  Heating load max. 10 W/m2
  2. Pressurization Test Result @ 50 Pa: max. 0.6 ACH
  3. Total Primary Energy Demand: max. 120 kWh/m2a

Our results were as follows:

  1. Space Heat Demand: 37 kWh/m2a
  2. Heating load: 22 kWh/m2a
  3. Pressurization test result (assumed 0.6 ACH, prior to testing)
  4. Total Primary Energy Demand: 116 kWh/m2a

So, you can see that the only criteria we met was the Total Primary Energy Demand. The blower door test we did later came back at 0.72 ACH (we’d run the software assuming 0.6 ACH as a target). As a result of the actual pressurization value, this would correspondingly increase the other values, but, for argument’s sake, let’s simply say that the Total Primary Energy Demand we either met, or were very close to meeting, while for the Heat Demand and Heat Load, we were WAY above the German PH maximum values.

I won’t reiterate why this makes sense given the climatic and heating requirement differences of the Canadian prairies versus Germany (see Part 2). But I had to ask the PH consultant:

“If we were still in the planning stages of the house, what would be your recommendations to try and reduce these two values (Space heating demand and heating load)? Not that we would change anything at this point, but I’d be curious as to how we would have gotten those values lower – and if it would have been at all possible with our type of house and in our climate to feasibly meet the PH requirements as stated?”

​The ways to reduce the heating load & demand are as follows:
  • More insulation (you already have great R-values)
  • Lower airtightness (dropping from 0.6 to 0.3 has quite an impact, but you’re already doing tremendously well)
  • Add more south glazing, reduce all other glazing. (You already have a great balance of glazing)
  • Build a larger home (!?!?… small homes are the hardest to make meet an intensity based target, as they have the largest surface area to volume ratio. Meaning that a larger building squeezes more floor area into slightly more exterior envelope area, reducing heat loss per unit of floor area. The Germans do this to motivate one to build multi-family dwellings… but the result in North America has been a lot of larger single family homes getting certified).
​Your home is a great example of why you don’t see certified Passive House buildings taking off in Canada. It’s damn near impossible to design a compliant home, without either blowing the bank or ending up with a solar oven. I’ve designed many compliant buildings, and 99% of them end up backing off on insulation and glazing to be around where your home is. You’ll note that local Net Zero Energy homes have similar envelope performance to your home; it’s most cost effective from that baseline to invest in ​solar PV generation than to add more insulation.​

Under the section of the report on Energy Balance Heating, I asked, “I was surprised by the amount of heat loss through the walls as well as the windows – is that due to the size/number of south windows? Or does that relate to the number of windows on the east/west and north sides more so? How could we have changed that to reduce the heat loss?”

Ideally, if the insulation in all areas of the building cost the same, you’d want to balance the R-values so that the heat loss intensity rate is the same through all envelope elements. Your exterior above grade wall has the highest relative rate of heat loss, so that’d be the place to add more insulation first if you want to improve performance. If you want to optimize R-value ratios this way, it’s smartest to add in the cost/ft2 of each insulation type, then you can maximise your return on investment. For example, adding 1″ of cellulose in the attic is much cheaper than an inch of foam outside of a wall.
The glazing of course has the highest rate of heat loss, but that’s just because you max out at around R10, where your opaque assemblies are R50+.
Your North, East, and West windows are NET losers of heat, while the South windows offer a net gain. This is as expected, and is really the basis of Passive Solar design, that a South window can actually HEAT a building throughout the heating season, with the right recipe. If you wanted to optimize the glazing further, you can add more South glazing while removing glazing on the other elevations (North being the biggest drag on efficiency), which will continually reduce the annual heating demand (how much energy is consumed to heat). This is a Red Flag area though, following this path of more South glazing will eventually cause overheating throughout the year. Prediction of overheating / discomfort is an area where the PHPP is very poor, and I’ve been burned in the past on some projects where we pushed the Passive solar too far in an attempt to reach certification. I now use IES<VE> as a energy modelling tool because of its ability to accurately predict overheating.
“Did you have any thoughts or considerations you would have given us had we run these numbers off the bat with the house planning? “
I’d honestly say you’ve done a great job on your home. It’s pretty much impossible to meet the PHI Passive House criteria for a small single family home in Saskatchewan, without significant and typically unjustifiably cost. The PHIUS criteria is based on a more climate-specific analysis, which attempts to stop investment in conservation at the point a little bit beyond where renewable generation is more feasible. Meaning it’s more realistic to meet the PHIUS+ targets, though we’re not seeing much uptake in the Prairies.​
All of this was very interesting and at the same time reassuring to me. Like many others, I had put a lot of credence on the PH standards as the be all and end all (even still despite reading and appreciating the issues I’ve previously discussed). It was good to hear that the assumptions we’d made were in the end in line with the reality of trying to build a PH in Saskatchewan.
Even still there was one last thing that I just had to know… it kept coming up again and again. It was one of those pesky assumptions we kept getting asked about. And one of my recently reposted blogs on Green Building Advisor brought it back to my mind again… German windows.
It is regarded that the German (or Polish and Lithuanian) Passive House certified windows are the creme de la creme of windows. They are attractive, heavy, thick (6″ wide!), and expensive. But if you want to reach Passive House standards, you gotta have ’em! (Or at least that’s what they say).
I felt a little bit guilty asking for quotes on windows that we were never going to buy, but my curiosity just couldn’t be helped. I wanted to know how expensive PH-certified windows would have been for our place. We’d heard outrageous prices of up to $80,000 for some homes.
We tendered a couple of quotes and received a reply from Optiwin of Lithuania. The salesperson was exceptionally thorough and I was really impressed with his communication (which made me feel more guilty). After a couple of weeks I received the pricing back. I was actually surprised that the cost of the PH windows was only $17,000 CDN more than the windows we purchased from Duxton Windows. Although they would have been certainly way outside our budget anyway – they weren’t 400% more than the price we paid by any means (just a measly 75% more). Nonetheless, I really had to pause again and wonder, why? What would make these windows $17,000 better than the fibreglass, triple pane windows we got? The U-factors and solar heat gain coefficients were not that big a difference. Maybe the the locking mechanisms of the windows could get you a bit lower on your airtightness – but $17,000? How long would it take you to save on heating bills to justify that “investment”?
All this being said, I’m happy to have answered my lingering questions and to confirm some of my assumptions. The bottomline, of course, though is that you want to be able to sit back and be happy with what is around you. To know that you did the best you could in building a sustainable home for the future.
I can’t complain.
IMG_3500

Musings on Passive House Standards and the Costs of New Home Construction, Part 2

If you have not read Part 1 yet, please go back and read it first. 

In mid-November of 2015, just prior to us moving into the house, we were asked to be apart of the Passive House Days tour (a world-wide weekend of awareness of Passive House and energy efficient building). Well, not “officially” – we were asked to be apart of the tour by the event organizer in Saskatchewan who is the Passive House (PH) consultant on what should become the first certified PH in the Saskatchewan. Even though we did not build a PH, we did follow their standards as closely as I could justify, but from the beginning we were not pursuing certification.

Although all of the visitors on the PH Days Tour were very interested in our house, our process, and why we did the things we did, one question we got a lot was, “If you were following the PH standards why not go all the way for certification?”

First, let’s back-up a little bit. Indeed the principles of a PH are second to none. From Passipedia: “Passivhaus is a building standard that is truly energy efficientcomfortable and affordable at the same time.” So simple. Brilliant even. I wanted to build a PH. Who wouldn’t?

Strangely, if you visit Canadian Passive House Institute (CanPHI) website there are total of 5 projects that have received Canadian PH certification. If you look up the PH Project Database there are a grand total of 23 houses in all of Canada that have received certification.

Why the discrepancy you may ask? Why so few certified projects?

This is a bit complicated and took me awhile to figure out. But here are the basics as I understand it: the Passivhaus standards were developed in Germany for German buildings in the German climate (obviously). However, when other builders in other countries tried to build a “Passivhaus” in say the USA, England, or Canada, they realized something profound: Hey… wait a second… I don’t live in Germany!

Maybe trying to build to German PH certified standards in Minnesota or Saskatchewan is going to be really difficult? Maybe impossible? Or maybe possible but really expensive? Or maybe possible but a really uncomfortable building to actually live in?

Still PH institute satellites started to spring up in most countries around the world. Slowly, Passive Houses, built to the German requirements, started to be built in other countries with the first certified Canadian building being built in 2009. The uptake, however, was certainly not rapid nor widespread. Why? Was it not as the PH Institute of Germany said that these buildings are “truly energy efficientcomfortable and affordable”? Or is it just that we are too cheap and/or lazy and/or complacent to meet those strict German requirements elsewhere?

It seems like this is something that these PH satellites were struggling with as discussed herehere and here.

A few years ago though, some people started to say, this is silly – why are we following German standards and requirements for our buildings when we don’t actually live in Germany?

The German PH standards are as follows:

  1. Space Heat Demand: max. 15 kWh/m2a  OR  Heating load max. 10 W/m2
  2. Pressurization Test Result @ 50 Pa: max. 0.6 ACH
  3. Total Primary Energy Demand: max. 120 kWh/m2a

Simple enough right? Hit these numbers using the PH planning software and your building can be certified as a PH. Where’s the problem?

The Pressurization Test for 0.6 ACH is strict, but not impossible. There had been many houses built to this level of airtightness before PH came around. Rob Dumont’s own home in Saskatoon in 1992 tested at an awe-inspiring 0.47 ACH.

Jumping to the third requirement, the Total Primary Energy Demand of 120 kWh/m2a ensures essentially that you are not wasting energy or are at least using it wisely. It forces you to use energy efficient lighting, appliances and mechanical systems. I don’t think anyone can argue with that as being important to green building.

The real problem though, in my opinion, is the Space Heating Demand of 15 kWh/m2a or heat load of 10 W/m2. These numbers dictate the maximum space heating allowed for each square meter of a building. Remember – this is based on a German climate.

In Germany the number of heating degree days (HDD) is around 3100 compared to over 10,000 HDD in Saskatoon. So that means there is over three times as much heating requirement in Saskatoon as compared to Germany. Besides that, who really cares what your heating demand is? With the maximum energy demand of 120 kWh/m2a already stated, what difference does it make whether you use 50% of that to heat your house or 10% in terms of your overall efficiency? This is my real beef with PH and the one that most others working towards PH in countries that have climates other than a German one tend to struggle with too.

Recently the PH Institute in the USA (PHIUS) split off (or was banished – depending on what you read) from it’s affiliation with the German PHI. This allowed them to develop their own standards and specific requirements for climate zones in the USA (Minneapolis also has different heating needs compared to Miami) and also to use North American calculation values instead of European. As a result it is now easier – ok, let’s say, attainable – to hit the PH targets for your Minneapolis house using a Minneapolis climate to calculate your requirements. Now that makes sense to me.

Sadly, the Canadian PH Institute has been resistant to following their American counterparts and has continued to align itself with the German requirements. Thus making it darn near practically impossible to meet the PH standard and become certified by the Canadian PH Institute.

There is a small loop-hole of sorts though, a Canadian house can pursue certification via the PHIUS, which is somewhat closer to our climate in the northern States. Although the conversion is not exact, the Space Heating Demand requirement for the northern USA is about 30 kWh/m2a (or double that of the German standard maximum). That’s better, but still the maximum heating degree days in Saskatoon are more than any other place in continental USA. Nonetheless, there have been a few of PHs in Canada that have used the US system to become certified (ok, like maybe 10 or 12).

I told you this was complicated…

Anyway, let’s try to bring this full circle, back to my original question of why don’t we just build all new houses in Canada to the PH standard?

I hope that I have presented the argument that it may not be realistic to build a certified PH in Canada and follow the original edicts of the German Passivhaus Institute of “energy efficientcomfortable and affordable.”

From Part 1 of this post, you may be able to see that there is a HUGE chasm between how most new homes in Canada are currently built as a result of our pathetic building code allowing inefficient homes to perpetuate, and the extremely difficult PH standards currently set in Canada.

Unfortunately, I think the CanPHI has done itself a disservice in not distancing itself from the German PH Institute. By not developing it’s own Canadian climate specific standards for the unique climate zones of our country, which maybe (just maybe) one day could be adopted on a large nation-wide scale.

Until such a time that the CanPHI recognizes this and modifies their requirements appropriately and regionally, I doubt that PH will ever gain much more than a very small handful of faithful followers willing to spend, at all costs, to meet an arbitrary set of values developed on the other side of the world.

That being said, I do KNOW that you CAN in fact build a house in Canada that IS energy efficientcomfortable and affordable.

But it isn’t a Passive House. 

Because that’s what we’ve done.

house-snow

Musings on Passive House Standards and the Costs of New Home Construction, Part 1

A friend of mine sent me this article for Tree Hugger yesterday about an Irish county that made the Passive House standard for all new home construction. This is a pretty big deal. The question then came up – why doesn’t Canada (or the USA) adopt such strict and stringent standards to their new home construction? Certainly the Paris Climate Conference of 2015 has finally made it official what everyone and their dog already knew: the world is overheating and we need to do something about it before we all die. Building better homes could make a massive difference in our world’s energy use. It is well-known that a certified Passive House uses 80-90% less energy than a standard house.

The problem, as usual though, in making such rigorous standards mandatory is a combination of bureaucracy, status quo, and resistance to change. In this post and my next, I will make the argument that I believe there is a skewed perspective on both sides of this battle in Canada.

Did you know that the minimum standard for wall construction in Saskatchewan (a province that has frigid winters of -40° temperatures for long stretches and over 10,000 heating degree days per year) is a 2×6 wall with batt insulation? The effective R-value of this wall is only R17.5 due to thermal bridging (as the wood studs bridge between the inside and outside of the wall). This standard must be out of date, you say? In fact, this was recently upgraded to this absurdly pathetic level in 2012 (it was only a 2×4 wall before that). Shameful.

As if this wasn’t bad enough, most homes in Saskatchewan feature R12 in basement walls and only R40 in the attic. There is no requirement for insulation under the slab of the house. Also, the building code requires only double-pane windows – such insufficient windows account for a massive amount of heat loss of up to 50% (these are usually vinyl framed windows, though sometimes wood or aluminum). And placement of these crappy windows can lead to further issues with heat loss due to inadequate southern exposure and large windows on the north side of house. Furthermore, air leakage rates in most new homes is about 2.0 ACH@50pascals (which is actually one of the lowest values tested in Canada). (Source: Energy Standards by Ken Cooper)

I assume that you can get the picture that our homes are generally very inefficient (don’t think that this is specific to Saskatchewan – this is relatively consistent across North America).

Although we did not build a Passive House, we followed the principles of this as closely as we could financially justify (which is the rub, more on this in my next post). For a quick comparison, our house has R56 walls, R80 attic, R32 basement walls and under-slab. Our latest air tightness test was 0.72 ACH@50pascals (and with some extra tightening we’re hoping to get this to 0.65 or less at the next test). We used triple-pane fibreglass windows. The design of the house maximized heat gain through the south windows and minimized heat loss through the windows on the east, west and north sides. Passive shading with our roof overhangs prevents overheating in the summer. The positioning of the house is directly south (a luxury we have living on an acreage). We also installed PV panels to offset our meagre energy use, which are becoming more and more affordable.

Now, a lot of people wonder and ask (I know I did prior to building), that it must cost substantially more money to build a house to this level of efficiency?

The simple truth is that it does not have to.

The general consensus is that a new custom home in Canada, excluding the cost of purchasing land, is between $200 and $300 per square foot to build (a contractor spec “cookie cutter” home built to the minimum standard with minimal features and cheap finishing can be $175/sq.ft or less). Indeed this is large range – for a 1500sq.ft home you could either spend $300,000 or $450,000. But for argument’s sake, let’s say $250/sq.ft is a realistic cost of a new custom home (we will also assume that most people would not build to the bare minimum construction standard of a spec house and see the benefit of adding triple pane windows and a 2″ layer of EPS foam on the outside of their 2×6 wall).

OK so where are the extra costs?

I would say that the design planning and orientation of the house will be the single biggest factor in determining your initial and long-term costs in a high performance, energy efficient house. It does not cost anymore to build a house with your windows facing north instead of facing south. Positioning the long side of your house to east does not cost anymore than facing it south. Designing correct overhangs for shading does not cost anymore than designing insufficient overhangs. Designing outcroppings, bay windows, and cantilevers does not cost anymore to design than a rectangle or a square-shaped building. Placing operable windows appropriately for cross-ventilation does not cost anything extra either. But all of these decisions and factors can have huge ramifications on the cost of construction and/or long-term costs of operation. We had several team meetings during our design process (including a Passive House certified designer, contractor, and LEED engineers) to decide on which systems would be best suited to be optimally energy efficient, be comfortable to live in, and also to make sure everyone, including sub-contractors were on the same page. This extra consulting time accounted for 2.5% of our overall cost.

In terms of actual construction costs, we built a double 2×4 stud wall that is 16″ wide. The cost of materials for this wall system versus the cost of 2x6s and the 2″ of EPS foam is almost negligible. Framing labour costs were slightly more though as each exterior wall was built twice (accounting for an additional 2% of the overall budget). Remember though our design is simple, a rectangle, meaning four walls – no bays or outcroppings. We also invested 20% more in purchasing fibreglass framed triple-pane windows versus the usual vinyl or wood triple-pane windows (accounting for an additional 1.75% of the overall budget). Insulation costs slightly more but pays for itself in short order when compared to long-term operation costs (the upfront cost is an additional 2% of the overall budget). Airtightness of the house did not cost us anymore than the standard vapour barrier (although it does require some attention to detail by the tradespeople) with the exception that we needed to install a heat-recovery ventilator which cost $1200 (0.3% of the budget).

But there are also some possible cost savings to consider. One can get away with a smaller mechanical heating system due to the lower heat load required in a super-insulated and airtight house. For us, our mechanical system cost about the same as a standard house due to us deciding to install in-floor heating and a wood burning stove. Although you certainly could get away with baseboard heaters or a very small forced air furnace combined with a heat coil on your HRV if you so chose (for us we wanted the in-floor heat and a wood stove – you can read about our reasons for this here and here). Most new houses also have air conditioners installed. We do not (cross-ventilation, insulation and proper shading is all that is needed).

The bottom line is that it cost us about 8% more to build a house that is in the range of 75-80% more efficient then a standard new custom home.

After these extra costs are accounted for the rest of construction costs are basically the same as any other house – how much do you want to spend to finish the house is based on your taste and how much you want to invest in your bathroom fixtures, lighting, hardwood flooring, custom cabinets (vs. Ikea), appliances and so on. Also, how much sweat equity do you want to do yourself? All of this will have a big impact on your end costs (consider, painting our house took 5 full days, but saved us about $6,000+. Installing the tile in the bathrooms and kitchen ourselves took 10+ full days, but saved us another $8,000).

Ok, so you’re probably thinking, how much did this damn house actually cost you? Tell me already! Although I haven’t done our final-final tally yet, it is in the range of $280/sq.ft. But this also includes the cost of our 6.2 kW solar PV system, our septic system, and the cost of trades to travel the 30 minutes to our house each day. Removing these factors, to build the same house in an urban area, you could easily do it for $250/sq.ft.

Say… that’s pretty much the same as what we said a typical new house would cost, right?

So why the heck isn’t everyone doing this??

Well, it goes back to the fact that there is an unfounded assumption that building an energy efficient house costs a lot more (I think we’ve shown that it simply does not have to). It also does not help that energy costs from non-renewables such as coal-fired electricity and natural gas are very cheap still (even so, those extra 8% in building costs for us should be paid back in less than 12 years in monthly energy bill savings). And the public outcry for action is not yet greater than the apathy of maintaining the status quo on the part of our government, the building industry, and those contractors who have been making a tidy profit on their suburban sprawl spec houses.

Part two to come…

IMG_3359

SUPER-insulation! Airtightness! The staples of a passive house.

There are seemingly innumerable weighs of building a super-insulated home. Once you venture outside of the conventional 2×6 walls with 1-2″ of EPS foam, there suddenly opens of a plethora of options. I won’t go into as I’ve talked about it before, in us choosing super-insulated walls system and the double-stud deep wall framing. Now what you put between those walls is just as important as how you construct those walls. In our case, we chose to use dense-packed cellulose.

Cellulose insulation is a made from recycled newspaper or other wastepaper and treated with borates for fire and insect protection (taken from GBA). Dense-packed cellulose is really, just what it sounds like: They pack it like crazy into the wall cavity – but not too crazy. In fact, the ideal balance between too loose and too dense is about 3.5 lbs per cubic foot. If it is too loose it will settle and result in poor insulation over time. The denser it is the more resistance to air leakage (the vapour barrier obviously reduces this further) and the better the insulation. However beyond about 4 lbs per cubic foot of density you are at risk of blow-outs (or the drywallers will not be able to work with your crazy wavy walls).

At 3.5 lbs per cubic foot and with 16″ thick walls, our R-value is a whopping R56 for the exterior above-grade walls!

We contracted a company, Westcan Insulators Inc., who has extensive experience with super-insulated homes and a wealth of knowledge in energy efficiency. At our preliminary meetings they provided us with so much valuable information (have preliminary meetings with all trades presents – it truly is invaluable). It was so reassuring to have them on board, as really in building an energy-efficient home, the insulation and airtightness are the most important aspects. If you don’t have this right, you really don’t have anything.

As Rob Dumont said: “Anything that has moving parts will fail; in fact, it must fail, because there is no such thing as a perfect bearing.” Therefore, passive systems are always better than active systems and insulation and air sealing, if done well, will have the greatest return (for the lowest cost) over the lifetime of the building.

So here’s how the process worked:

On day 1, the crew came in and wrapped the walls with InsulWeb, a mesh that holds the dense-packed cellulose in place while spraying. They go through a buttload of staples to hold this onto the studs. They have to put a staple every inch along every stud, so you can imagine how many staples that would be. Crazy.

DSC_0025

DSC_0028

The next day, they bring out a big 5 tonne truck and using a 3″ wide metal hose they make a hole at one-third and two-thirds of the way up each stud bay. They then proceed to essentially filling the walls with the entirety of the truck. In actual fact, they unloaded about 6000 lbs of insulation into the walls alone (holy crap!).

DSC_0031

Here is a close-up shot of the cellulose and penetration. You can nearly read the newsprint.

DSC_0032

The next day came the vapour barrier and air sealing. This actually took the better part of five days for them to complete, but they did an excellent job (by the looks of it – we will really find out when we test it with a blower door in the next few weeks).

Airtightness is really equally as important as the insulation – perhaps even more so. Air leaking into and out of a building is not efficient no matter how much insulation you have in the walls. They used 6 mil poly for the vapour barrier with acoustic sealant at every seam. Each seam was also taped to ensure another layer of added protection, though truthfully this is probably unnecessary (from what we have been told, with this insulation alone, without the vapour barrier, would surely pass the R2000 airtightness requirement of 1.5 ACH @ 50 pascals), but it’s not hard to do and once the drywall is up you can’t go back and add more.

Around the windows and doors though we spent a bit of money and purchased Tescon Profil tape from 475 Building Performance. The stuff runs at $45 per roll, which is certainly a premium price versus the $9 per roll of good ol’ Tuck tape (the latter of which we used around all other seams). However between the walls and the windows/doors, there isn’t the layer of protection of the dense packed cellulose insulation (although they did spray foam around each window and the rough opening), so we felt the extra price could be justified here (to do the whole house in the Tescon Profil tape would be simply cost-prohibitive [although some people do it]. For the marginal gains you “might” make in airtightness, you would never save enough money on the long-term to justify that huge upfront cost, in my humble opinion).

IMG_3029

DSC_0035

DSC_0036a
Expensive fancy tape.