The February Experiment: Heating with Wood Fire

After writing my last post, and happily confirming that our house had exceeded our expectations for energy use for 2016, I’d made the comment: Based on the predicted numbers, the heating energy likely accounts for about 50% of our overall energy use. Makes me wonder too how much better we could do if we burned wood a bit more often?”

I’d written that without thinking about what that would mean too much. But after re-reading my post I got thinking, ‘Hmm… what if we did burn wood more?’

We tended to keep the thermostat around 70°F in the winter, which was comfortable, but would still allow us to have a wood fire on occasion and warm the house up to 73-74°F. It’s not that we really needed it, we just liked it. The in-floor hydronic heat can certainly meet our heating requirements. But we’d figured the wood stove would always be our back-up heat in the event of a prolonged power outage or in extremely cold weather. BUT – what if we flipped it and tried a little experiment? Make the wood stove our primary heat source and our in-floor heat the back-up. I’d also received our most recent bill from the power company which advised that our electrical rates had gone up 3% for 2017…so…

Impressively, my wife was game for the idea too. So, on February 1st, we turned the boiler way down, to 65°F, and started loading the wood stove.

My objectives for the month were:

  1. To determine if we would love/hate or be impartial to the need to fill the wood stove in the morning and night.
  2. To determine if we would be comfortable with the house temperature we could maintain.
  3. To determine how much electrical energy we could save by using wood as our primary heat source.

First off, I love our wood burning stove from Morso Denmark. And I love fire. Who doesn’t really? Isn’t their something primordial about sitting around a crackling fire with friends and family? We’d had it a mandatory requirement from day one of the house planning that we would have a wood burning stove in the main living space.

fire2

I’d only ever seen one house with the stove in front of the windows and I think it is a brilliant spot. It doesn’t obstruct our view during the day, but at night the fire gives a nice focal point to the room. This placement also allows it to be viewed from the kitchen, dining room and living room and extend it’s heat range to the bedrooms on the main floor.

We have a wood nook directly opposite the wood stove that is 24″x84″x20″ which contains the mess and also adds another interesting feature to the room.

living1

But enough about design and aesthetics (although I do want to write about that again sometime), let’s talk about function.

My goal was to keep the house around 69°-72°F during the day and a bit cooler at night while we slept.

The month of February was an interesting temperature mix. The first week was stupid cold (-30 to -40°F/C). But then typical for SK, it warmed up to above freezing temperatures for mid-month and then dropped to seasonal temperatures for the last week (-15°C or 5°F). This made it actually a very convenient month to test the wood heat giving us a fair bit of variety.

The first week (very cold week) we burned through the entire wood storage nook. This was surprising to me as I’d only filled it twice the entire winter beforehand! We were going to use up some wood. Basically what I would do is start a fire when I got up (it was good reason to get up and not to hit the snooze button too). The house temperature was around 66°F or 68°F most mornings. I’d get it hot, then load it up and turn the damper down before work. Passive solar gain would keep the house reasonably warm during the day and when we’d get home the house was usually about 69°F. We’d start the fire again and keep it burning until we went to bed, usually trying to get the house temperature up to around 74°F. Again, I’d load up the stove and turn the damper way down before tucking in.

I actually didn’t find this nearly as much work as I thought I would. In fact, I liked it quite a lot. Certainly it’s more work then just getting up and doing nothing, but it really wasn’t bad.

By the second and third weeks, we were in our groove, and the outside temperature was mild. We used half as much wood and the house stayed above 70°F most days and nights, which was higher then we’d had the boiler set at before.

In the last week, we used a bit more wood again, but it didn’t seem like much work. I ended up loading the wood nook three times for the month in total.

We had pine, tamarack, maple and poplar wood that we burned for the month. The pine and tamarack had been what we’d mostly been using for the winter. It’s a soft wood, but has high BTU output, so it burns hot, and also burns quickly. It’s good for a quick warm-up if the house is cooler, but it doesn’t give that prolonged slow burn you might want at night time. It does however burn clean, not giving off a lot of smoke and ash. Maple is a bit better for the prolonged evening slow burn given that it is a hardwood. While the poplar, well, it’s crap. I regret burning it. It’s a dirty wood, very smoky and lots of ash. It’s BTU output is crap too. Oh well. Now I know.

wood

OK so for objectives #1 and #2, I realized that I was generally impartial to the work of loading the stove. We loved the wood heat though. It was comforting and, in fact, most days the house was able to stay above the typical 70°F temperature we’d had the boiler set at previously, which was a nice bonus. Some of the really cold days when you’d wake up to 66°F inside were a bit uncomfortable for the first few minutes until the wood stove got things warmed up. Also, I didn’t really want to be in bare feet on the concrete floors. Even though the house would be warm, we generally would wear slippers.

Now, the big question was, was the extra time/effort worth the energy savings?

This was something that I was most interested in and there was no way to know for sure until I checked out power at month’s end. I’d had the data from 2016 so it was easy to compare the numbers. Based on my notes from February 2016, it was a similar month in terms of average temperature, however as you will see, there are some significant differences. I’m fairly confident that a direct comparison from February 2016 to February 2017 is reasonable. So what did the numbers show? Let me tell you:

February 2016: Solar generated = 553 kWh vs. Overall Energy Use = 2706 kWh

February 2017: Solar generated = 378 kWh vs. Overall Energy Use = 1258 kWh

First off, I was shocked at the overall energy use! It was a massive drop from the previous year. That’s a 64% drop in electrical energy! Wow. I  really did not expect that. And as you can see it’s not like we had an especially sunny month by any means, the solar generation was actually one-third less than last year so we weren’t even getting much passive solar heating.

Needless to say, I was very pleased with these results. When I crunched the numbers a bit more, the cost savings were $177.00 (1448 kWh x $0.12224/kWh)! In a single month. That’s awesome.

Roughly taken over the course of an entire winter that could be upwards of $1000/year in energy savings if we burned wood regularly. And now, well, I’m seriously considering doing just that…

fire3

 

How Were Our Energy Predictions? An Analysis of the First Year Energy Use: Solar and Energy Performance

bwhouse

We had spent a lot of time planning and designing a house that would be energy efficient, aesthetically pleasing, and cost effective. This is a fine balance to try to find. However, it really is a big guessing game until you actually live in the space and track it’s performance. You can run all of the computer programs you want, but you really don’t know how things will be until you’re in and living your normal life.

We had installed PV solar panels on the house to combat some of our energy use with the hope that someday we could work towards a Net Zero home, but this too, seemed to be a big guess as to how well it would perform.

In the planning and designing stages of the house we ran a couple different energy models on the house. The first is called the “HOT2000” program. “HOT2000 is an energy simulation and design tool for low-rise residential buildings.  This software is widely used across Canada to support program, policy and regulatory development and implementation.  HOT2000 is developed and managed by the Office of Energy Efficiency at Natural Resources Canada” (NRCAN). It was originally designed for use with the R2000 energy efficiency program, which was an early promoter of green home building in Canada.

We later used the Passive House Planning Package (PHPP), which is now the widely used software program for building highly efficient homes worldwide.

My intent with this article is to report the varying predictions of the these two programs, as well as our predicted solar generation, and also to show our actual energy use for the year of 2016 – our first full year in the new house. I’ll also report some considerations and possible options for the future.


1: PRE-BUILD ENERGY MODELLING

I had been very curious about this when we were in the early stages of planning the house. Most of what I read was the predictions of various homes, but I’d only come across one house that actually tracked and reported its energy use – that being the Mill Creek Net Zero House in Edmonton, AB, Canada. Which, although using exceptionally little energy, did not meet it’s net zero target. That being said, it was very close.

I fully did not expect our home to be anywhere close to net zero, but we hoped that over the next number of years we could gradually build our solar panel array (as costs come down) to eventually reach our goal.

OK, let’s get to the numbers:

HOT2000 Predictions:

Annual Space Heating Energy Consumption: 7159 kWh

Annual Domestic Hot Water (DHW) Energy Consumption: 3409 kWh

Annual Appliance Energy Consumption: 8760 kWh

TOTAL = 19,328 kWh/year

PHPP Predictions:

Annual Space Heating Energy Consumption: 7584 kWh

Annual DHW Energy Consumption: 3974 kWh

Annual Appliance Energy Consumption: 11,310 kWh

TOTAL = 22,868 kWh/year

PV Array Predictions (6.2 KW)

PHPP Estimation: 7321 kWh/year

Solar Installer’s Estimation: 9300 kWh/year

So obviously there are discrepancies between the HOT2000 and the PHPP. Although their prediction of Heating and DHW are quite close, surprisingly the Appliance use was significantly different. Also, surprising was the discrepancy in the solar predictions – I was a bit disconcerted by the drastic difference of 2000 kWh/year!!

For comparison’s sake, according to Stats Canada website’s most recent 2011 home energy use data, a Saskatchewan home consumes an average of 30,555 kWh/year (110 GJ), of which electricity for appliance use is 8889 kWh/year (32 GJ).

Drum roll please.

… Actually first, some clarifications. All I have is our actual overall energy use. I cannot separate out Heating vs. DHW vs. Appliances unfortunately, although this would be interesting. The following information is taken from the solar panel’s generation and the Electrical meter. I tracked each month and have recorded it below.

OK, now the drum roll.

solar


2. ACTUAL ENERGY CONSUMPTION AND PV GENERATION:

January: Solar generated = 315 kWh vs. Energy Use = 3323 kWh

  • Yikes! I was a pretty worried when I saw this. That being said, January was very cold and has very short, dark days (-20° to -30°Celsius most days. We kept the house around 71°F).

February: Solar generated = 553 kWh vs. Energy Use = 2706 kWh

  • February is always a cold month. Although you can see the solar was getting a bit more sunlight already as the days lengthened.

March: Solar generated = 603 kWh vs. Energy Use = 1716 kWh

  • This was getting a bit better still. I lowered the house temperature to 69°F. It was getting warmer outside and more solar gain.

April: Solar generated = 979 kWh vs. Energy Use = 1385 kWh

  • April was warm and sunny. Nice spring weather. Started to not need the in-floor heat on at all during the day, but still ran it during the night.

May: Solar generated = 960 kWh vs. Energy Use = 1029 kWh

  • Almost net zero for the month. It was a very nice month. We were running our river pump frequently to water new grass, which I think increased energy use quite a lot.

June: Solar generated = 1434 kWh vs. Energy Use = 989 kWh

  • Net Positive in a big way. Beautiful month. Obviously the longest days of the year.

July: Solar generated = 956 kWh vs. Energy Use = 511 kWh

  • The first two weeks of July were cloudy and rainy which is unusual for July.

August: Solar generated = 950 kWh vs. Energy Use = 645 kWh

  • This month was very rainy as well, which again, isnot normal. Usually August is very hot.

September: Solar generated = 778 kWh vs. Energy Use = 611 kWh

  • Cool and cloudy. I replanted grass seed and was running the river pump a lot again.

October: Solar generated = 315 kWh vs. Energy Use = 1478 kWh

  • October sucked!! 315 kWh is the same as January! It snowed on October 4th. We had to turn the heat back on. There were only 2-3 sunny days all month.

November: Solar generated = 390 kWh vs. Energy Use = 1750 kWh

  • Cloudy month, but had some mild days mid-month with above freezing temperatures. Still, we generated more solar in November then October, which should not happen.

December: Solar generated = 229 kWh vs. Energy Use = 2857 kWh

  • Shortest days of the year and extremely cold (-40°F). What do you expect?

ACTUAL TOTALS:

Actual Solar PV Generated = 8189 kWh

Actual Household Energy Consumed = 19,000 kWh

Actual Total Energy Used (consumption – PV) = 10,811 kWh


3. DISCUSSION

I’m extremely pleased with these numbers! I’ve been waiting for two and a half years to know what our actual energy use would be.

We actually used less overall energy then was predicted by both the HOT2000 (19,328 kWh/year, although it was close) and a LOT less then PHPP (22,868 kWh/year), which is surprising that it was so off… It makes me wonder how close we would be to meeting the Passive House standard given the actual energy use is 3868 kWh less then it predicted… Hmm. Maybe we should have tried to hit that airtightness target of 0.6 ACH after all. Oh well.

Nonetheless, the overall energy use of 19,000 kWh is very good (and such a nice round number too!). We did not do anything different in terms of our behaviour except to just be smart and not be wasteful. I still baked bread every weekend and we used our larger appliances just like we normally would. We have two refrigerators and two deep freezers in the house. All the lights are LEDs. We try to hang our clothes to dry. We used our wood stove occasionally, maybe 2-3 times per week, but mostly just for ambiance and occasionally on the extremely cold days. That being said, based on the predicted numbers, the heating energy likely accounts for about 50% of our overall energy use. Makes me wonder too how much better we could do if we burned wood a bit more often?

As for the actual solar PV generation (8189 kWh), it pretty well split the difference between the installer’s predicted 9300 kWh/year and the PHPP prediction of 7321 kWh/year. I think this past year was on the cloudier side for sure. We had a lot of rain in the Spring and even more in the Fall, which is very unusual. Followed by an extremely early snowfall which seriously cut into our PV generation (see October – brutal). It probably would be closer to the installer’s prediction on a typical year (will have to see what 2017 brings).

Still based on the actual numbers, our solar panels did cover nearly 45% of our overall energy use for 2016. We would however need to double our solar panels (add another 6.2 KW array) to meet Net Zero with consistency year to year. Who knows, maybe in the coming years the costs will drop more and perhaps government incentives will increase. One can hope.

Comparing our house to the average Saskatchewan home consumption of 30,555 kWh, we did very well. Using 37% less energy then the average home. And when you take into account the solar energy generated that drops us further to using 65% less energy then the average house! Sweetness.

Considering that we are completely on electric energy, it makes sense to make the house as energy efficient as possible. The cost of electricity for us is $0.12224/kWh (while cost for natural gas power is about $0.04/kWh equivalent), which works out to an electricity bill of $1321.54/year (10,811 kWh x 0.12224). We do however have to pay a basic service fee of $32.61/month (even when we are net positive in a month) which sucks and then 5% tax. That brings our absolute costs for the year to $1798.50/year or $149.88/month, which is about half the cost of our previous homes power and electricity bill. I’m ok with that.

throughthetrees

This post was updated on March 4, 2017. 

Blue Heron EcoHaus in Western Living Magazine and Green Building Advisor

Our house was recently featured over at Western Living Magazine, a Canadian-based modern architecture and interior design magazine. They interviewed our designer, Crystal Bueckert, and included a few quotes from me as well. The write-up is excellent and I’m happy to see how good the house shows.

The article shows a number of photos that I haven’t even posted here yet! I hope you enjoy the little tour.

Check it out here:

Inside a Beautiful, Eco-friendly Saskatchewan Farmhouse

Processed with VSCO with f2 preset

On the flip-side of modern design, as some of you already likely know, our house was also a featured green house blog over at the excellent Green Building Advisor website. This website is not about trendy design/architecture, but is about building excellent, high quality and, primarily, energy efficient homes. If you are planning to build a green home, this website is a must resource. I was honoured to be asked to be a contributor to the website for the past year. Most the articles I wrote were already featured on this blog, but the comments section for each entry offers a wealth of valuable information from some of the top green builders, designers and architects in North America. It was a very humbling opportunity for me. It was a 16-part series that I hope offers valuable information to others who are venturing down the road of green building.

Recently, I came across a very interesting article written on Green Building Advisor in which a respected green building designer modelled our house comparing it to a German-biult Passive House. The implications of this and the discussion points are fascinating to read and there are nearly 50 comments on it that offer further wonderful insights: A Lesson From the Kranichstein Passive House

As for my articles on Green Building Advisor:

  1. Is Passive House Right for a Cold Canadian Climate?
  2. Heating a Superinsulated House in a Cold Climate
  3. Choosing a Super-Insulated Wall System
  4. How Small Can We Go? 
  5. Picking High Performance Windows
  6. Let Construction Begin
  7. Making an ICF Foundation
  8. Dealing with Really Bad Water
  9. Adding Walls and Roof
  10. Placing Concrete Floors
  11. Siding and Soffits at the Blue Heron EcoHaus
  12. Insulation, Air-Sealing and Solar Array
  13. Blower Door Testing
  14. Adding It All Up, Part 1
  15. Adding It All Up, Part 2
  16. Adding It All Up, Part 3

Musings on Passive House Standards and the Costs of New Home Construction, Part 1

A friend of mine sent me this article for Tree Hugger yesterday about an Irish county that made the Passive House standard for all new home construction. This is a pretty big deal. The question then came up – why doesn’t Canada (or the USA) adopt such strict and stringent standards to their new home construction? Certainly the Paris Climate Conference of 2015 has finally made it official what everyone and their dog already knew: the world is overheating and we need to do something about it before we all die. Building better homes could make a massive difference in our world’s energy use. It is well-known that a certified Passive House uses 80-90% less energy than a standard house.

The problem, as usual though, in making such rigorous standards mandatory is a combination of bureaucracy, status quo, and resistance to change. In this post and my next, I will make the argument that I believe there is a skewed perspective on both sides of this battle in Canada.

Did you know that the minimum standard for wall construction in Saskatchewan (a province that has frigid winters of -40° temperatures for long stretches and over 10,000 heating degree days per year) is a 2×6 wall with batt insulation? The effective R-value of this wall is only R17.5 due to thermal bridging (as the wood studs bridge between the inside and outside of the wall). This standard must be out of date, you say? In fact, this was recently upgraded to this absurdly pathetic level in 2012 (it was only a 2×4 wall before that). Shameful.

As if this wasn’t bad enough, most homes in Saskatchewan feature R12 in basement walls and only R40 in the attic. There is no requirement for insulation under the slab of the house. Also, the building code requires only double-pane windows – such insufficient windows account for a massive amount of heat loss of up to 50% (these are usually vinyl framed windows, though sometimes wood or aluminum). And placement of these crappy windows can lead to further issues with heat loss due to inadequate southern exposure and large windows on the north side of house. Furthermore, air leakage rates in most new homes is about 2.0 ACH@50pascals (which is actually one of the lowest values tested in Canada). (Source: Energy Standards by Ken Cooper)

I assume that you can get the picture that our homes are generally very inefficient (don’t think that this is specific to Saskatchewan – this is relatively consistent across North America).

Although we did not build a Passive House, we followed the principles of this as closely as we could financially justify (which is the rub, more on this in my next post). For a quick comparison, our house has R56 walls, R80 attic, R32 basement walls and under-slab. Our latest air tightness test was 0.72 ACH@50pascals (and with some extra tightening we’re hoping to get this to 0.65 or less at the next test). We used triple-pane fibreglass windows. The design of the house maximized heat gain through the south windows and minimized heat loss through the windows on the east, west and north sides. Passive shading with our roof overhangs prevents overheating in the summer. The positioning of the house is directly south (a luxury we have living on an acreage). We also installed PV panels to offset our meagre energy use, which are becoming more and more affordable.

Now, a lot of people wonder and ask (I know I did prior to building), that it must cost substantially more money to build a house to this level of efficiency?

The simple truth is that it does not have to.

The general consensus is that a new custom home in Canada, excluding the cost of purchasing land, is between $200 and $300 per square foot to build (a contractor spec “cookie cutter” home built to the minimum standard with minimal features and cheap finishing can be $175/sq.ft or less). Indeed this is large range – for a 1500sq.ft home you could either spend $300,000 or $450,000. But for argument’s sake, let’s say $250/sq.ft is a realistic cost of a new custom home (we will also assume that most people would not build to the bare minimum construction standard of a spec house and see the benefit of adding triple pane windows and a 2″ layer of EPS foam on the outside of their 2×6 wall).

OK so where are the extra costs?

I would say that the design planning and orientation of the house will be the single biggest factor in determining your initial and long-term costs in a high performance, energy efficient house. It does not cost anymore to build a house with your windows facing north instead of facing south. Positioning the long side of your house to east does not cost anymore than facing it south. Designing correct overhangs for shading does not cost anymore than designing insufficient overhangs. Designing outcroppings, bay windows, and cantilevers does not cost anymore to design than a rectangle or a square-shaped building. Placing operable windows appropriately for cross-ventilation does not cost anything extra either. But all of these decisions and factors can have huge ramifications on the cost of construction and/or long-term costs of operation. We had several team meetings during our design process (including a Passive House certified designer, contractor, and LEED engineers) to decide on which systems would be best suited to be optimally energy efficient, be comfortable to live in, and also to make sure everyone, including sub-contractors were on the same page. This extra consulting time accounted for 2.5% of our overall cost.

In terms of actual construction costs, we built a double 2×4 stud wall that is 16″ wide. The cost of materials for this wall system versus the cost of 2x6s and the 2″ of EPS foam is almost negligible. Framing labour costs were slightly more though as each exterior wall was built twice (accounting for an additional 2% of the overall budget). Remember though our design is simple, a rectangle, meaning four walls – no bays or outcroppings. We also invested 20% more in purchasing fibreglass framed triple-pane windows versus the usual vinyl or wood triple-pane windows (accounting for an additional 1.75% of the overall budget). Insulation costs slightly more but pays for itself in short order when compared to long-term operation costs (the upfront cost is an additional 2% of the overall budget). Airtightness of the house did not cost us anymore than the standard vapour barrier (although it does require some attention to detail by the tradespeople) with the exception that we needed to install a heat-recovery ventilator which cost $1200 (0.3% of the budget).

But there are also some possible cost savings to consider. One can get away with a smaller mechanical heating system due to the lower heat load required in a super-insulated and airtight house. For us, our mechanical system cost about the same as a standard house due to us deciding to install in-floor heating and a wood burning stove. Although you certainly could get away with baseboard heaters or a very small forced air furnace combined with a heat coil on your HRV if you so chose (for us we wanted the in-floor heat and a wood stove – you can read about our reasons for this here and here). Most new houses also have air conditioners installed. We do not (cross-ventilation, insulation and proper shading is all that is needed).

The bottom line is that it cost us about 8% more to build a house that is in the range of 75-80% more efficient then a standard new custom home.

After these extra costs are accounted for the rest of construction costs are basically the same as any other house – how much do you want to spend to finish the house is based on your taste and how much you want to invest in your bathroom fixtures, lighting, hardwood flooring, custom cabinets (vs. Ikea), appliances and so on. Also, how much sweat equity do you want to do yourself? All of this will have a big impact on your end costs (consider, painting our house took 5 full days, but saved us about $6,000+. Installing the tile in the bathrooms and kitchen ourselves took 10+ full days, but saved us another $8,000).

Ok, so you’re probably thinking, how much did this damn house actually cost you? Tell me already! Although I haven’t done our final-final tally yet, it is in the range of $280/sq.ft. But this also includes the cost of our 6.2 kW solar PV system, our septic system, and the cost of trades to travel the 30 minutes to our house each day. Removing these factors, to build the same house in an urban area, you could easily do it for $250/sq.ft.

Say… that’s pretty much the same as what we said a typical new house would cost, right?

So why the heck isn’t everyone doing this??

Well, it goes back to the fact that there is an unfounded assumption that building an energy efficient house costs a lot more (I think we’ve shown that it simply does not have to). It also does not help that energy costs from non-renewables such as coal-fired electricity and natural gas are very cheap still (even so, those extra 8% in building costs for us should be paid back in less than 12 years in monthly energy bill savings). And the public outcry for action is not yet greater than the apathy of maintaining the status quo on the part of our government, the building industry, and those contractors who have been making a tidy profit on their suburban sprawl spec houses.

Part two to come…

IMG_3359

Solar panels – Good for the environment, good for your wallet

It wasn’t enough for us to simply reduce our carbon footprint through building a super-insulated eco-house. We wanted to come as close to eliminating our footprint completely by working towards a net zero standard. The house envelope, airtightness, passive solar design, and thermal mass of the house, would all have the effect of reducing our energy consumption by 75-80%. The rest of our energy for heating, domestic hot water, and appliances was purely electric based, with the exception of our wood burning stove. We have no natural gas to our property – and to be honest, even if we did, we would not have hooked it up. Burning fossil fuels for energy, despite it’s current affordability, is not a clean energy source nor is it sustainable. Still, despite what some people say, electricity – at least in Saskatchewan – is not sustainable nor is it clean either. Our electricity comes from a power plant that uses a combination of coal and natural gas. Really, in one of the windiest and sunniest places in the world, you’d think we should be able to have some capacity to utilize renewable energy sources. Unfortunately, this is often a top-down decision in the government and sadly, both our provincial and federal governments are heavily financed through their strong ties to the oil and gas industries in this country (no matter how much of a downturn there has been in the markets over the past year) and there is no sign of this changing anytime soon

Until such a time that the collective elite decide to recognize the need to shift away from non-renewables, it will continue to be left to the grassroots movements and local homeowners to decide if they care enough to make a commitment to renewable energy – despite the upfront costs of doing so.

But these times are changing. No longer is it purely a decision of environmentalism. Now the argument of the economics of renewable energy can be made. Let me present this in layman’s terms (as I am, of course, a layman myself).

Our projections for electrical energy consumption:

Estimated yearly energy use (DHW, appliances, heating) = 14,508 kWh (including regular wood stove use for heat)

Cost per kWH hour of electricity in Saskatchewan = $0.1456

Our projected electrical costs per year = 14,508 x 0.1456 = $2,112.36/year or $176.03/month

We worked with a company in Saskatoon, called MiEnergy, in sizing a choosing which solar array system would best suit our needs. We decided to purchased a 6.2 kW PV array. There was the option to upgrade to the 9.3 kW system but we felt that this would definitely be oversized for us at this point. The 6.2 kW system will be slightly under-sized but we can always add on more panels at a later date if we so choose.

6.2 kW system delivers an average of 775 kWh/month = 9330 kWh/year on average

That provides us an immediate saving of $1358.45 per year ($113.20/month) in energy costs. Expanded over the course of a 25 years this delivers $33,961 in electrical savings at the current electrical rates. (I found an interesting article on the energy outlook in the U.S. – there has been a $0.04 cent rise per kWh from 2003 to 2013. Extrapolating that, conservatively, over the next 25 years we should expect an upwards $0.08-0.10 rise per kWh. That equals between $0.22-0.24/kWh. The projections from MiEnergy pegs the 30 years saving at $58,067).

If you take the cost of the PV panels and roll this into a 25 year mortgage at a current 3.19% interest, this only costs a meagre $110/month. So essentially instead of giving $113.20/month (currently, which will increase) to the government to cover our extra electrical bill, we will invest $110/month towards the PV panels on our mortgage. After 25 years, they are paid for and we have money in our pocket (not to mention the fact that we’ve saved 233,250 kWh of energy from being generated at a polluting power plant). That’s a win for us and for Mother Nature.

IMG_3047

If you want the facts and economics only, then disregard the story that follows. Of course, I wish my post, could be that short and simple. But as I’ve learned with building the house – something always goes wrong – no matter how bizarre, stupid or impossible it might seem…

The above photo is the after shot. After I received the phone call at 6pm on a Friday night from Saskpower (the electrical company) asking why a large steel beam had been driven directly through their power line?

“Uh… I don’t… know?”

You see there is this thing called: “Call Before You Dig.” It’s a free service that most places have that asks that you please call them to mark your underground power and gas lines before digging so that you don’t kill, maim, electrocute or otherwise dismember yourself. Unfortunately, as we learned that night, it is not a perfect service.

The solar company had called and had the power line (note, the singular word: line) marked a couple of days before the planned installation. Unfortunately, there were in fact, two power lines running into our transformer, one from our neighbours place to ours and the other running from ours to about 60 houses over the next number of miles. Well, you guessed it, they hit the one running to the 60 houses (that was not marked), knocking out their power for the next 8 hours. Oopsy.

IMG_3040When I showed up to the house, you could see the one line that was marked (as it was prior) with the solar panel racking system 4-5 feet away, then you saw where they had discovered the 2nd line, lying directly underneath the 2nd row of racking (not previously marked). The Saskpower guys though were very good, they realized it was not the fault of the solar company, nor mine, the line simply had not been marked by the Call Before You Dig people. They were just glad that no one had been hurt. They were able to restore power to the 60-odd houses that had been affected and the next day they were back out to splice and move our newly rediscovered power line.

(Incidentally, this was a total blessing, had they actually marked both power lines previously, we would not have been able to put the solar panels where we had wanted them. We would have been forced to find another, less ideal spot a much greater distance away).

By the way, we have had a number of people ask us why we did not choose to utilize a solar thermal system for water heating. Basically, it was because of this article and this article on Green Building Advisor.